
ED 383 212

AUTHOR
TITLE

INSTITUTION
REPORT NO
PUB DATE
NOTE
AVAILABLE FROM

PUB TYPE

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

ABSTRACT

DOCUMENT RESUME

FL 023 018

Hart, Robert S.
Improved Algorithms for Identifying Spelling and Word
Order Errors in Student Responses.
Illinois Univ., Urbana. Language Learning Lab.
LLL-T-22-94
Dec 94
80p.

Language Learning Laboratory, University of Illinois
at Urbana-Champaign, G70 Foreign Languages Building,
707 S. Mathews St., Urbana, IL 61801.
Guides Non-Classroom Use (055)

MF01/PC04 Plus Postage.
*Algorithms; *Authoring Aids (Programming);
Capitalization (Alphabetic); Comparative Analysis;
*Computer Assisted Instruction; Diacritical Marking;
*Error Analysis (Language); Grammatical
Acceptability; Hypermedia; Programming; *Sentence
Structure; *Spelling
*Word Order

The report describes improved algorithms within a
computer program for identifying spelling and word order errors in
student responses. A "markup analysis" compares a student's response
string to an author-specified model string and generates a graphical
error markup that indicates spelling, capitalization, and accent
errors, extra or missing words, and out-of-order words. The algorithm
determines whether the response was acceptable or not, and computes a
string of graphical error marks to be displayed below the student
response. Synonyms and ignorable words can be specified and spelling
errors, extra words, and word order errors can be accepted at the
author's discretion. Spelling analysis is done using a dynamic
programming algorithm that produces a least-cost edit trace; word
order analysis is implemented using recursive branch and bound
search. Improvements on earlier versions of the algorithm give more
intuitive markup values. The algorithm is implemented as a HyperTalk
XFCN. HyperTalk scripts can provide numerous input parameters that
control the details of the matching process, and the algorithm
returns a variety of fit measurements that characterize the match.
Non-roman linear writing scripts are supported. The report contains
detailed information on use of the function and serves as a user
manual. Contains two references. (Author/MSE)

* Reproductions supplied by EDRS are the best that can be made
* from the original document.

Language Learni Laboratory
College of Liberal Arts and Sciences

Technical Report No. LLL-T-22-94
December 1994

University of Illinois
at Urbana-Champaign

IMPROVED ALGORITHMS FOR IDENTIFYING
SPELLING AND WORD ORDER ERRORS IN STUDENT RESPONSES

Robert S. Hart

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

U.S. DEPARTMENT Of EDUCATIO4
0114 of Erlucahonal Research and Improvement

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

1/4,QThis doCument has been reproduced es
reCeived from the person Or Organrlaheen
originating it

O Minor changes have been mad, to Mimeo
rprOductiOn oualrty

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)."

Points of view or opineOne slated in tfU CloCu
ment do not ntssanty rprsent OffsCsal
OEM p011ifoOn or policy

Technical Report No. UAL-T-22-94
December 1994

IMPROVED ALGORITHMS FOR IDENTIFYING
SPELLING AND WORD ORDER ERRORS IN STUDENT RESPONSES

Robert S. Hart

ABSTRACT

This report describes improved algorithms for identifying spelling and word order errors in student
responses. A markup analysis compares a student's response string to an author specified model
string and generates a graphical error markup that indicates :- yelling, capitalization and accent
errors, extra or missing words, and out-of-order words. The algorithm determines whether the
response was acceptable or not, and computes a string of graphical error marks which can be
displayed below the students response as error feedback. Synonyms and ignorable words can be
specified within the model, and spelling error, extra words and word order errors can be accepted at
the author's discresion. Spelling analysis is done using a dynamic programming alogorithm which
produces a least-cost edit trace; word order analysis is implemented using recursive branch and
bound search. Improvements on earlier versions of the algorithm give a more intuitive markup
values. The algoritm is implemented as a Hyper Talk XFCN. Hyper Talk scripts can provide
numerous input parameters that control the details of the matching process, and the algorithm
returns a variety of fit measurements that characterize the match. Non-roman linear writing
systems are supported. The report contains detailed information on use of the function and serves
as a user manual.

KEYWORDS: software tools, HyperCard, Hyper Talk, XCMD, XFCN, CAI, CALL, response
analysis, error diagnosis, response judging, markup, matching, error feedback, spelling, word order,
foreign language

I
I
I
I
I
I
I
I
I
I
1

I
I
I
I
I
I
I
I

LANGUAGE LEARNING LABORATORY
College of Liberal Arts and Sciences
University of Illinois at Urbana-Champaign

Technical Report No LLL-T-22-94

IMPROVED ALGORITHMS FOR IDENTIFYING
SPELLING AND WORD ORDER ERRORS IN STUDENT

RESPONSES

Robert S. Hart

Associate Director, Language Learning Laboratory
Assistant Professor of Humanities

September 1993

Available from: Language Learning Laboratory, University of Illinois at Urbana-Champaign, G70 Foreign
Languages Building, 707 S. Mathews St, Urbana, IL 61801 (217)-333-9776

TABLE OF CONTENTS

TABLE OF CONTENTS 4

INTRODUCTION .1

CORRECTIONS IN VERSION 2.0 OF THE MARKUP ALGORITHM 2

USE OF CHARACTER CATEGORY INFORMATION FOR SPELLING ANALYSIS 4

USING THE MARKUP XFCN 6

CALLING THE MARKUP XFCN.. 7

SPECIFYING THE MODEL AND RESPONSE PARMETERS 10

ADDITIONAL PARAMETERS CONTROLLING THE MARKUP PROCESS 11

CHANGING THE CHARACTER INFORMATION TABLES 13

INFORMATION RETURNED BY MARKUP 14

EXAMPLE 1: MARKING UP A RESPONSE IN HYPERCARD 20

EXAMPLE 2: MODIFYING THE MARKUP AND PUNCTUATION LISTS 23

EXAMPLE 3: JUDGING WITH MULTIPLE RIGHT AND WRONG ANSWERS 25

EXAMPLE 4: USING THE MARKUP MAPS TO CONTROL VOCABULARY HELP 28

EXAMPLE 5: USING MARKUP MAPS TO JUDGE LISTS 30

EXAMPLE 6: A COMPLETE VIEW OF JUDGING PARAMETERS 31

EXAMPLE 7: USING THE EXACT SPELLING MARKUP 34

TECHNICAL DETAILS AND LIMITATIONS 36

AVAILABILITY 37

REFERENCES 37

APPENDIX 1: LISTING OF MARKUP XFCN 39

1

INTRODUCTION

The program described in this report implements improved versions of the algorithms for analyzing and
marking word order errors in student responses first described in Hart (1988). Several minor difficulties in
the previous version have been corrected, a number of new features have been added, arid the whole utility
has been reimplemented as a HyperCard XFCN (external function) to make it is available in a Macintosh
environment.

The basic functionality of the Markup XFCN is to accept a model string (in educational applications,
usually a "correct answer" specified by the courseware author), a response typed in by the student, and
generate a graphic markup that indicates where the response is incorrect. Here is an example:

Model: The very quick brown fox jumped over the big lazy dog

Response: thevery %let(pronw foxx oar the lazy big dog.
Markup: \ = >< xAxxX A « (I)

The markup symbols displayed beneath the (incorrect) response indicate the editorial changes needed to make
the response match the model. The symbol " \ " indicates one or more omitted letters; "x" an extra letter,
and " -" an incorrectly substituted letter. The symbol pair "><" indicates transposition of two letters; "x"
means an extra word (one that should not be in the response, or else one that is so badly misspelled that it
can't be recognized); "A" indicates that one or more words is missing at that point in the response; and "«"
means that the word is part of the response, but in the wrong position -- it should be moved leftward to one
of the "A" symbols. Incorrect capitalization is symbolized by "_." and an accent error by "-".

Spelling analysis is done by a dynamic programming algorithm which generates a markup corresponding
to a least-cost editing trace. Editing operations are restricted to omission of a letter, insertion of an extra
letter, substitution of one letter for another, or transposition of two adjacent letters. Capitalization and
accent errors are also identified and marked. The user may specify the way in which capitalization
disagreements will be treated: exact agreement required, upper case required wherever the model has
uppercase, or case differences ignored. Rua-together words are identified as such if they are adjacent in the
model. Some misspelling is tolerated in one or both run-togethers.

Order analysis identifies extra words, missing words, and misplaced words, The user can specify various
degrees of tolerance when defining what constitutes a match with the model: spelling errors can be excused;
incorrect word order can be excused, and extra words in the response can be excused. The order analysis
returns three goodness of fit measures: proportion of matched words, proportion of words in correct order,
and average amount of misspelling per matched word.

When specifying the model, the author is allowed to specify one or more words which will be ignored if
they occur in the student's response. Such a word or list must be surrounded by angle brackets, <>. A list
of "synonyms" (i. e., a set of words any one of which would be correct at a given position in a sentence)
must be surrounded by square brackets, [1.

The basic theory underlyiog the word order and spelling analysis and markup, which was presented in Hart
(1989), has not changed and the reader should consult that document for a detailed exposition of the
approach used. This report is restricted to two goals: (a) describing the changes in the algorithms made in
version 2.0, and (b) giving a detailed account of the HyperCard interface so that lesson developers can easily
incorporate the markup facility into HyperCard stacks. Appendix 1, however, does present a complete
listing of this version of the MarkUp XFCN.

2

CORRECTIONS IN VERSION 2.0 OF THE MARKUP ALGORITHM

In certain cases, version 1.0 of the Mark Up algorithm returned a markup string which, though technically
correct, was counter-intuitive. Once example is:

Model: He lives in Chicago

Response: He lives in in Chicago.
Markup: xx (2)

Here, it would agree better with common sense if the mis-accented "in" were marked as the extra word rather
than the adjacent, and perfectly correct, "in":

Response: He lives in in Chicago.

Better Markup: xx (3)

The reason for the poor markup in (2) is simple. In determining the edit distance between pairs of words,
version 1.0 of the Mark Up XFCN simply ignored any capitalization or accent errors. Word similarity was
determined without any reference to these matters, and since spelling and word order analysis built on
similarity information, they also ignored such errors. Only at the very end, when displaying the graphic
markup did the algorithm check for such problems. Thus, as far as the word order routine is concerned,
these two responses are identical:

Response' : He lives in Chicago (4a)

Response2: He lives in Chicago (4b)

In cases like (2), where there are redundant identical words, the Mark Up XFCN always uses the leftmost
possibility.

The fix for this problem was straightforward. Two new weight parameters have been introduced into the
program, wcap (the weight of a capitalization error) and waccent (the weight of an accent error). Since
capitalization and accent errors are normally perceived as relatively minor problems, we do not want them to
have much influence on edit distance, so their default values have been made much smaller than the
remaining weights. The current default weights are:

wdelete
winsert 2
wsubstitute
wtranspose
wcap
waccent

20

20

30

20

1

1 (5)

This means that "in' and "in" are now at an edit distance of 1 from one another, rather than 0 as previously.
Note also that the "average" distance associated with a single edit operation is now

((wdelete + winsert + wsubstitute + wtranspose)/4) + ((wcap + waccent)12) (6)

This is appropriate because deletion, insertion, substitution, and transposition are mutually exclusive
operations, but a cap or accent error may or may not accompany a substitution.

A related situation where version 1.0 of the Mark Up XFCN fails to perform satisfactorily is illustrated in
this example:

3

Model: the time

Response: then the time.

Markup: x XXX (7)

Here the problem is not due to accents or capitalization errors, but to the way that response words were
paired with model words. When considering candidates for pairings, the procedure ignored the exact
magnitude of edit distance between word pairs. Instead, a cutoff criterion was used. If the edit distance
exceeded the cutoff value, the pair were considered as a potential match; otherwise, they were considered to
be distinct words which could not be paired under any circumstances. Thus, in (7) the response words
"then" and "the" are considered to be equally good matches for the model word "the", and "then" is selected
because it happens to be leftmost, even though this entails a spelling error.

A third case of inappropriate markup is

Model: seen on a boat in Chicago

Response: seen in a boat in Chicago
Markup: A c c xx (8)

In this case the first "A" marks the location of the missing words "on a boat", consequently "on" must be
inserted at the location of the "A", and the words "a boat" are marked with "«" to show that them must be
moved leftward from their current location to the location of the "A". This will leave the word "in" (the one
which has not been marked as extra) adjacent to "Chicago", to make up the phrase "in Chicago". The
second "in" is unneeded and is marked as extra. While technically correct, this markup is unintuitive and, if
fact, very confusing. Most readers would agree that the student simply substituted "in" for "on" in her
response, so the appropriate markup would be

Response:
Markup:

seen in a boat in Chicago
xx (9)

The strange markup in (8) occurs because of the way the word order analysis operated in version 1.0.
Matching proceeded in two steps. First response words were paired with candidate model words in such a
way that the number of inversions is minimized; that is, the criterion for doing the matching is to keep the
order of words in the response as close as possible to their order in the model. In (8), the candidates were

Response word: 1 2 3 4 5 6

Model word candidates: 1 5 3 4 5 6 (10)

Notice that model word 5, "in", is the only available candidate for pairing with response word 2 and also
response word 5, both of which are "in". (Model word 2, "on", is not a candidate for pairing with anything
because its normalized edit distance from every response word exceeds the cutoff threshold.) In the initial
phase of matching, response words are paired one at a time, proceeding from left to right, When response
position 2 is considered, the only available candidate is model word 5. A response word is not allowed to
remain unpaired if there is any candidate that will match it, so the pairing (2, 5) will be created. This
means that when we reach response word 5, there is nothing left to pair it with, so it is tagged as an extra
word.

To remedy such problems, the word order analysis had a second stage, embodied in the
a dj ust_solution procedure, which attempted to improve the quality of the match by taking into
account the actual magnitude of edit distance. This procedure looked at certain pairs of matches to see if
exchanging the match between pairs would reduce the overall edit distance without increasing the number of
inversions. However, attention was restricted to unmatched response words (namely, those matched with
the "null" model word), and the algorithm merely checked to see if the overall match could be improved by
taking a model word away from some other response word and pairing it with a currently unmatched one.
The algorithm was roughly as follows, where M, M' denote words in the model ; R, R', words in the
response, and R <-> M indicates a pairing of R with M:

4

FOR each matched response word R DO
FOR each unmatched response word R' to the right of R DO

BEGIN
M := the word paired with R;
IF edit distance of (M, R') is less than the edit distance of (M, R) AND
(pairing M with R' leads to no more inversions than pairing M with R)
THEN

BEGIN
Re-pair M with R;
Re-pair null with R

END
END (11)

Although this adjustment cleared up many deficiencies in the match, it was not sufficient in general and
still allowed markups like (8). To eliminate these shortcomings, version 2.0 of the adjust_solution
algorithm has been completely rewritten and made much more general. Now all possible pairs of matches,
R <-> M and R' <-> M', are considered, and if exchanging the pairing so that R <-> M' and R' <-> M
results in a lesser overall edit distance without increasing the number of inversions, or decreases the
inversion count without increasing the edit distance, then the solution is modified to incorporate the
exchanged match, essentially as indicated in the following algorithm:

FOR each response word R DO
FOR each response word F. DO

BEGIN
M := the model word matched with R;
M' := the model word matched with W;
oldEditD := edit distance, of (M, R) + edit distance of (M', R);
newEditD := edit distance of (M, R) + edit distance of (M', R);
oldInvK := number of inversions in original solution;
new InvK := number of inversion when R <-> M' and R' <-> M;
IF (newEdit D < oldEdit D AND new InvK <= oldInvK) OR

(newEditD = oldEditD AND newlnvK < oldInvK) THEN
BEGIN

Re-pair R with M';
Re-pair R' with M

END
END (12)

The revised algorithm considers many more potential exchanges, and thus improves the overall match in
situations where the earlier version failed to do so.

A complete listing of version 2.0 of the MarkUp XFCN, including the adjust_solution procedure,
appears in Appendix 1.

USE OF CHARACTER CATEGORY INFORMATION FOR SPELLING ANALYSIS

Version 1.0 of the MarkUp XFCN specified the phonetic category of each character (whether it was a vowel
or consonant), and allowed the user to modify such information, but made no use of it. In version 2.0,
phonetic information is utilized during the process of spelling analysis to achieve a more psychologically
meaningful measure of edit distance.

The problem is the weight which should be attached to a substitution error, that is, an error which results
because some character M in a model word has been replaced by a different character R in the student's

t (J

5

response. Version 1.0 assigned the same weight (namely, the value of the variable wchange 'hich
defaults to 30) regardless of the actual identities of M and R. Consequently, "readable" has the same edit
distance from "readible" and "reidable" as it does from "readxble ", "rezdible", "oedable", and "readaule".
Intuitively, however, the latter substitutions are less likely to occur, at least for students who are careful
typists but poor spellers -- a description which applies, for example, to many student language learners.
The reason is that spelling errors usually involve substituting one vowel for another or one consonant for
another, but only rarely a consonant for a vowel or visa versa. Of course typing errors, being a function of
keyboard position and n-gram frequency (Rumelhart & Norman, 1982), do not necessarily show this
pattern. We need a way of assigning differential substitution costs to different pairs of character categories.

The problem of determining accurate substitution probabililties for character pairs (or character category
pairs) can be solved only by some combination of empirical data and psychological modelling. However,
there are situations where even rough estimates will be useful. Consider the case of Japanese writing,
which utilizes three basic categories of character: katakana, hirigana, and kanji. In the computer
representations now becoming standard, all of these characters are represented as 32-bit character codes, and
Mark Up will treat each as if it were a single character. But this psychologically inaccurate. Since the
hiragana character represent CV syllables, a beginner will be relatively likely to confuse them with one
another. The substitution of a hiragana character for a kanji within a word should be a relatively rare event,
and thus have a high edit distance attached to it. Kanji do have internal structure, and thus might be
substituted, one for another,. with one another with varying degrees of probability. However, the character
code of a Kanji does not reveal its internal structure sufficiently so that Mark Up can determine similarity.
Thus, the cost of every kanji-kanji substitution must be the same. In fact, to prevent every word in the
model from being identified with every word in the response, such substitutions must be forbidden (infinite
cost). We thus need at least two categories of character, hirigana and kanji. Hirigana-hirigana substitution
will be permitted at a moderate cost, but kanj -kanji and kanji-hirigana substitution will be excluded. (This
example is theoretical, because version 2.0 of Mark Up does not support 32-bit characters.)

Version 2.0 of Mark Up supports the assignment of differential substitution costs by providing five different
"phonetic" categories. Actually, a better term would be character categories, because they need not actually
concern phonetic properties of the character, and because the categories are mutually exclusive and
exhaustive -- each character must belong to exactly one category. The categories have the hard-coded names

vowel, consonant, phon3, phon4, phon5

These labels are purely conventional however, the lesson author can redefine the categories in any way she
wishes. The default phonetic information assigns a, e, i, o, u, and y to the "vowel" category and all other
characters to the "consonant" category; as a result, the three remaining categories "phon3", "phon4" and
"phon5" are not used at all.

To make use of these categories, a 5x5 matrix of weights called phon_matrix is created and intialized with
these default values:

Response Char Category
Model
Char vowel consonant phon3 phon4 phon5
Category

vowel 30 36 36 36 36

consonant 36 30 36 36 36

phon3 30 36 36 36 36
phon4 30 36 36 36 36

phon6 30 36 36 36 36

Each row M corresponds to a possible category of the model character, and each column R to a possible
category of a response character. The cell phon_matrix [M, R] gives the cost of replacing a model character
of category M by a response character of category R. For instance phon_matrix[vowel, consonant] is 36,

6

the cost of subsituting a consonant for a vowel. Given the default partition of characters between vowel and
consonant, the matrix entries indexed by phon3, phon4, and phony are redundant, because they will never be
referred to during the analysis.

The default weights are assigned according to the following rule: intra-category substitutions (vowel-vowel,
consonant-consonant, and other cells along the diagonal) are assigned the value of the parameter wchange,
which has a the default value 30. Inter-category substitutions (off-diagonal cells) are assigned the value
(1 . 2*wchange) = 36. The factor 1.2 is arbitrary, but was chosen so that vowel-consonant substitutions
would be more expensive than vowel-vowel or consonant-consonant, and yet not so expensive that they
would prevent words containing typos from being identified as potential matches. The user can modify
both character category assignments and the phon_matrix values, as explained below.

USING THE MARKUP XFCN

The MarkUp XFCN is implemented as a Macintosh code resource, so it must be made available to your
stack before you use it. This can be done in several ways: (1) copy it directly into the stack resource fork
with the RESCOPY or RESEDIT utilities; (2) copy it into your HOME stack resuorce fork using the same
utilities; or (3) execute a START USING STACK command to attach a stack which already contains the
MarkUp XFCN as a resource. Copying directly to your own stack is more stable, but also wasteful of
space if copies proliferate.

Once the MarkUp XFCN has been made available, it can be called like any other HyperCard function. It
enables you to produce a graphic error markup in a HyperCard stack. When you call Markin", you must
input a model string and a response string. MarkUp will match the two and return a markup string, as well
as other information about the quality of the match. You can then display this information to the student,
or use it in any other way you chose.

As one step in generating the graphical error markup, the MarkUp XFCN judges the response ((i. e.,
evaluates it for correctness). You can control the amount and nature of error tolerance during this judging
process by changing the values of various input parameters to Markup. To be specific, you can specify
synonyms for various words in the response. You can specify words which should be ignored if they occur
in the response. And you can stipulate that the response will be judged correct even if it contains spelling
errors, or word order errors, or extra words.

Evaluating and marking up a user's response is a complex activity which can be modified in various ways
to reflect various kinds of content and instructional needs. You can control the way in which MarkUp
operates by setting input parameters. Thirteen of these parameters can be set by passing values directly to
the MarkUp XFCN when it is called. More esoteric aspects of operation can be controlled by putting
suitable values into five global HyperCard variables: theMarkUpWeights, theMa rkUpS ymbols,
theMarkUpCharInfo and theMarkUpDebug.

The direct return of the Markup XFCN is a markup string. This is simply a sequence of symbols in
character string format, like that in (1), which indicates the nature of the mismatches between the model and
the student's response. Additional information may be returned in the four HyperCard global variables
theMarkUpReturnValues, theMarkUpMaps, theMarkUpParamDisplay, and
theMarkUpDebug.

CALLING THE MARKUP KFCN

The syntax for calling the Mark Up XFCN allows for up to 14 input parameters, however 12 of these are
optional and need not be specified except in special situations. The general form of a Mark Up function call
is

markup(model,
response,
capFlag,
extraWords0k,
anyOrder0k,
misspell0k,
wordMarkUpNeeded,
runTogetherNeeded,
adjustNeeded,
shortCut,
markUpMapsNeeded,
parameterDisplayNeeded
spellingOnlyNeeded
debugNeeded) (13)

The meaning of each of the thirteen input parameter slots, and the range of values acceptable in that slot, is
as follows:

model String or container specifying the correct response.

response String or container holding the student's response.

capFlag If "exact_case" (the default) then the capitalization in the
response must exactly match that in the model or else cap
errors will be marked. If "authors_caps ", the response
must have a capital whenever the model does, but additional
capitals in the response are permitted. If " igno re_ca se"
then case is ignored when matching model and response.

extraWordsOk

anyOrderOk

If True, judge OK even if extra words are present in the
response. If False (the default) judge NO if extra words are
present.

If True, order of words in the response does not have to
match the order of words in the model in order to get an OK
judgment. If False (the default), judge NO if words are not
in the specified order.

misspellOk If True, judge OK even if some words are misspelled. If
False (the default), judge NO if there is any spelling error.

wordMarkUpNeeded If True, an error markup string will be generated and returned.
If False (the default), no string (i. e., a null string) will be
returned, only a judgment of OK or NO. If you simply wish
an evaluation and don't want to display the graphic markup as
error feedback, you can speed things up slightly by setting this
parameter to False. In that case, your script can use the other
information returned by MarkUp to determine what feedback to
give the student.

runtogetherNeeded If True (the default), MarkUp will find and mark run-together
words. If False, run-togethers will not be identified as such,
but will be marked as misspelled or unidentified words.

id

7

adjustNeeded

shortCut

markUpMapsNeeded

parameterDisplayNeeded

Turning off this feature when Mark Up is running slowly will
speed things up, but at the cost of degrading the quality of the
markup.

If True (the default), Mark Up will try to "improve" the
graphical error markup to make it more intuitive. If False,
this improvement is not done. Do not turn off improvement
unless speed is a serious problem, because it significantly
degrades the quality of the Mark Up

If True (the default), Mark Up will do a "fast" spelling
analysis that will not generate a spelling markup between
badly misspelled pairs. If False, force a complete spelling
analysis for every word. Use False if you need a markup for
very badly misspelled words (e. g., when using Mark Up in a
spelling lesson). Turning off shortCut may slow the program
down significantly when model and/or response are long.

If True, Mark Up will generate and return in the HyperCard
global variable theMarkUpMaps two "maps" showing
which model words are paired with which response words. If
False (the default), this map will not be returned, and the
value of theMarkUpMaps remains unchanged.

One of the characters "v", "b","d","c","h","p","w",
"f","s", or "m" or else nothing at all (the default). If one
if these characters is present, then information of the requested
type will be returned in the HyperCard global variable
theMarkUpParamDisplay. Otherwise the value of
theMarkUpPararnDisplay remains unchanged. The
character that you use as an input parameter determines the
kind of information that will be returned:

bil

dtl

VERSION of the MarkUp XFCN which is running

Table of BASE CHARACTER specifications

Table of DIACRITIC specifications

"c" Table of CASE specifications

"h11 Table of PHONETIC CATEGORY specifications

"p" Table of PUNCTUATION CHARACTER
specifications

"w" Values of the JUDGING WEIGHTS AND
THRESHOLDS

f It

si.

Values of the JUDGING FLAGS

Values of the MARKUP SYMBOLS

Values in the PHON_MATRIX

This parameter allows you to copy a judging table into a
HyperCard container, where it can be inspected using the
SHOW VARIABLES option of the HyperCard debugger. The

14

8

9

spellingOnlyNeeded

debugNeeded

format in which this information is returned is discussed
below.

If no value or "x" (the default), then the standard spelling and
word order analysis is done. If the value is " r " or "p ", a
special, spelling-only analysis will be done: the Model and
Response strings will be immediately submitted verbatim to
the spelling analyzer and an edit trace will be generated by
compairing every character in the two strings, including
punctuation, spaces, and return characters. None of the special
syntax used to define synonym and ignorable word lists in the
model will be recognized. Since there are no word boundaries,
no order analysis will be done. The value of
spellingOnlyNeededdetermines the nature of the return:

"p" Return a "pretty" markup string, suitable for display
beneath the response string.

"r" Return the raw markup string, without prettying it
up.

"x" Do not do the special spelling-only analysis; do the
normal spelling and word order analysis.

Since the Model and Response strings are treated as if they
were words when spellingOnlyNeeded is "r" or "p" neither
string can exceed the maximwn word length of 20 characters.

The information returned in the HyperCard global variable
theMarkUpReturnValues are different for the special
analysis, and consists of a raw edit distance and a normalized
edit distance.

Returning a raw trace forces a least-cost edit trace string
(markup string) to be computed no matter how dissimilar the
Model and Response are, so this option is useful for spelling
lessons or other cases where an exact spelling markup is
needed even when a response is badly misspelled. Only the
"pret:y" markup will display properly, but it has incomplete
information about the nature of errors present, so the " r"
option is appropriate if you want to do computations on the
markup string.

Setting this parameter to "True" cause technical information
about the internal workings of MarkUp to be returned in the
HyperCard global theMarkUpDebug. Included are the edit
distance matrix, values of ignorable words in the model and
response, and candidate match sets for each response word.
This information is intended only for debugging and
development purposes. If False (the default), no information
is returned.

The Response and Model strings must be specified when you call the MarkUp XFCN. The remaining 12
parameters are optional. If you are satisfied with the default value of a parameter, simply leave that slot
empty (of course, a comma must be present to mark the location of the unused slot if other parameter
values follow). If the unused parameters are dangling (i. e., come after the last real parameter value), the
commas may also be omitted, following the usual HyperCard convention for input parameters.

values follow). If the unused parameters are dangling (i. e., come after the last real parameter value), the
commas may also be omitted, following the usual HyperCard convention for input parameters.

IMPORTANT: Each of the 14 input parameters reverts to the default value after each call to Mark Up, so
non-default values must be respecified each time you call Mark Up.

HyperCard evaluates each parameter before sending it to the Mark Up)(ITN, so parameters may be specified
by any HyperCard expression, including constants, variables, chunk specifiers, or field specifiers.

SPECIFYING THE MODEL AND RESPONSE PARMETERS

The simplest form of correct answer is a single word or string of words:

The quick brown fox jumped over the lazy dog. (14)

The model should not contain any characters which are currently defined as punctuation marks, because such
characters are removed from the student's response string before it is judged. If such characters appear in the
model string, it will be impossible for the response to match the model.

The square brackets n[]" and the angle brackets "< >" have special uses in the model string. Square
brackets are used to specify a list of (one or more) synonymous words. The words must be separted by one
or more spaces; then punctuation is not acceptable. The words do not have to be synonyms in the usual
sense; in fact any collection of words can be put into a synonym list. Such a list simply specifies that any
member of the list will be acceptable at that point in the model, as in

The [quick fast speedy] brown fox jumped over the [lazy stupid) dog (15)

Any word in the list will be acceptable at that position in the response. Thus the model shown will result
in the following markups

Response: The quick brown fox jumped over the lazy dog. OK (16a)
Markup: (none)

Response: The speedy brown fox jumped over the stupid dog. OK (16b)
Markup: (none)

Response The brown speedy fox jumped the lazy dog over. NO (16c)
Mark Up: A

Angle brackets specify a list of (one or more) ignorable words.

<the a> brown fox jumped over (lazy stupid] dog (17)

There may be several lists of ignorable words, which may appear anywhere in the response, but the effect
will always be the same as a single list of ignorables at the front of the model. Any response word which
matches any of the ignorable words "well enough" will simply be treated as if it were not present in the
response. "Well enough" is defined to permit captialization and accent errors, but no other kinds of spelling
errors. Thus, if (17) is used as a model, the following responses will all be judged correct:

Response: A brown fox jumped over the stupid dog.

Response: The brown fox jumped over the lazy dog.

(18a)

(18b)

10

11

Version 2.0 of the Mark Up XFCN places some limitations on both raodel and response string:

The model and response strings must each be 255 characters or less (or 22 characters,
if you have selected the Spelling Only analysis).

No single word in the model or response may be more than 22 characters (punctuation and spaces
do not count as part of a word)

Neither model nor response may contain more than 18 words. Each entry in an ignorable word
list or synonym list counts as a word.

Exceeding these limits will cause Mark Up to abort the judging process and return an error string which
defines the nature of the error.

These limits are hard-coded in PASCAL as global constants, and can be changed by recompiling the
PASCAL source code. They am imposed by the fact that Version 2.0 of MarkUp defines its large data
structures as static arrays within PASCAL. Since Mark Up XFCN runs under HyperCard and has to borrow
its space from HyperCard, increasing the limits above causes the HyperCard stack to overflow into the heap
and immediately terminates HyperCard with system error 28 (stack has moved into application heap).

ADDITIONAL PARAMETERS CONTROLLING TtiE MARKUP PROCESS

The more technical aspects of the markup analysis can be controlled by changing the values of the five
HyperCard global variables theMarkUpPunctuation,theMarkUpSymbols,
theMarkUpWeights,theMarkUpPhonMatrix and theMarkUpCharInfo. You can change the
values of these variables by using the HyperCard PUT command, and can inspect their current values by
using the HyperCard debugger's SHOW VARIABLE.option. It is unlikely that you will have reason to
change these variables, but specialized judging situations sometimes require it.

Each of these globals expects a list of comma-separated items as a value. To change a value simply PUT a
new list into the appropriate global variable. You must always provide the entire list of values, including
all the values which you are not changing.

Each time that the MarkUp XFCN is executed, it examines the values of each of these globals. If the value
is empty, then the global is ignored and the default values built into MarkUp (as indicated immediately
below) will be used. If the value is non-empty, then the contents of the global will be read into the
appropriate PASCAL tables and variables before the markup analysis is begun. Hence, you may revert to
the default values of the parameters at any time by simply PUTing empty into the appropriate global.

Note that these parameter values are "sticky": once you have PUT a value into a global, it will continue to
be effective until you change it, or until you leave HyperCard. You do not need to reset these values each
time you call the MarkUp XFCN. Of course, it will not hurt anything if you do so, except to slow things
down a bit.

IMPORTANT: The information from these global variables is converted into PASCAL strings which
cannot be more than 255 characters long. Hence, never put more than 255 characters of text into these
variables.

Each of the four global variables expects to receive a list with a very exact format, as explained here:

theMarkUpPunctuation This string of characters determines what characters MarkUp
will consider to be punctuation marks if they occur in the
student's response. Its default value is (" < >; : () <>? !

theMarkUpPunctuation This string of characters determines what characters Mark Up
will consider to be punctuation marks if they occur in the
student's response. Its default value is (" < >; : [1 <>? "
& space & return). If you redefine the punctuation set
don't forget to include the space and return characters.

theMarkUpSymbols This string is a list of 12 characters which determine the
symbols used to display the error markup. The default value
of the string is " _-Le.«x ->< ". Each position in the
list corresponds to a particular type of error

theMarkUpWeights

1

2
3

addcap

droPeaP
accenterror

4 extraword "X"

5 missingword "A "

6 moveword .,
7 extraletter "x"

8 missingletter nv,

9 substituteletter .=.

10 transposeletterl ..
11 transposeletter2 " <"

12 runonword

underscore
underscore
tilde
capital x
capital delta
double left arrow
lower case x
backslash
equal sign
left angle bracket
right angle
bracket
left square bracket

The shapes shown are those which display in courier font. If
you use a font other than courier, you may need to change
some of the characters in this list, selecting appropriate
characters from the font that you are actually using.

This is a list of nine comma-separated numbers which
determine how spelling errors are computed. The default value
of the is "20,20,30,20,1,1,0.67,0.35.0.2" The meaning of
each position is

1 winsert 20
2 wdelete 20
3 wchange 30
4 wtranspose 20
5 wcap 1

6 wax= 1

7 cutoff 0.67
8 prop_errors 0.35
9 runon_criterion 0.2

The names in the second column are the PASCAL variable
names used internally by the MarkUp XFCN. The first six
numbers are the costs or weights attached to (respectively)
letter insertion, omission, substitution, transposition,
capitalization errors, and accent errors, when matching for
spelling errors. The last three numbers have the following
meanings:

cutoff: Ratio of word lengths (shorter/longer) must exceed this
value, or the edit distance between them will automatically be
set to infinity (relevant only when the "shortcut" input
parameter is set to True).

12

13

prop_errors: Normalized edit distance between two words must.
be less than this value, or the two words will be considered
non-matches

runon_criterion: Maximum edit distance which can exist
betwe4 n the concatenation of two adjacent model words, M and
M', and a response word R, if R is to be considered as a
candidate match for M and M' run together.

theMarkUpPhonMatrix This is a list of 25 (=5x5) comma-separated integer values.
The first five values correspond to the first row of the
phon_matrix; the next five to the second row, and so on.
Item number R of row number M specifies the cost of
replacing a model character of category M by a response
character of category R. I. e., the list of entries is in this
order:

theMarkUpCharInfo

(m1 rl) (m1 r2) (ml r3) (m1 r4) (ml r5) (m2 r1) (m2 r2)
(m2 r3)

Defines character properties such as case, base character,
diacritic, and phonetic category. If you are using special
character sets or special alphabets or keyboards, you may need
to change this information. The values you provide here will
be read into various PASCAL arrays internal to the MarkUp
XFCN code resource. How to change these tables is described
in the next section.

CHANGING THE CHARACTER INFORMATION TABLES

As explained above, the default character information tables may be modified by placing information into
the global variable theMarkUpCharInfo. However, the information there must be formatted in a
precise way before it can be used by MarkUp. Each HyperCard line in theMarkUpCharInfo must
contain information of one of four types: base character, diacritic, case, or phonetic.

IMPORTANT: Each HyperCard line of theMarkUpCharInfo will be placed in a PASCAL string;
hence no line should ever exceed 255 characters. If you have too much information to fit on one line, use
additional lines for the remaining information.

The format for each type of information is as follows:

base character info: b,CHAR,x x x x

Here "b" is a switch which informs MarkUp that the following
information concerns base character. CHAR is a base
character, and x x x x ... stands for a list of characters with
diacritics which have char as their base character, e. g.,

b,e,6 eaat
b,i,1
b,c,c

IJ

14

Notice that case, like base and diacritic is an character attribute,
so all base characters should be specified as lower case
characters.

diacritic info: d,DIACRIT,x x x x

Here "d" is a switch which informs Mark Up that the following
information concerns diacritics. DIACRIT must be one of the
diacritic values: acute, grave, circumflex,
dieresis, super°, cedilla, tilde, macro. x x x
x ... stands for a list of characters which have that type of
diacritic, e. g.,

d,acute,a 6 f 6
d,grave,a 616 it
d,cedilla,g
d,dieresis,a t I t.1 iI

case info: c,CASE,x x x x

Here "c" is a switch which informs MarkUp that the following
information specifies character case. CASE must be one of
the two case values up_case or down_case, and x x x x ... is
1 list of characters that have that attribute, e. g.,

c,up_case,ABCDEFGHIJKLMNOPQRSTUV
WXYZ
c,down_case,abcdefghijklmnopqrstuvwxyz0
123456789

phonetic info: p,PHON,x x x x

Here "p" is a switch which informs MarkUp that the following
information specifies "phonetic" properties. PHON is one of
the five values vowel, consonant, phon3, phon4, or
phony; the list x x x x ... is a list of the characters which
have that attribute, e. g.,

p,vowel,a e i o u y
p,consonant,bcdfghjklmnpqrstv w x z
Phonetic information is used to adjust the edit distances
assigned for mismatched letters.

Regardless of the type of information, the first two items in each line must be separated by commas. The
remaining entries in the line may be run together or separated by one or more spaces for readability (as in
these examples). There can be any number of lines, and the different types of information can be mixed in
any order.

INFORMATION RETURNED BY MARKUP

The MarkUp XFCN directly returns the graphical markup string, which can simply be displayed beneath the
student's response. (Note, however, that unless the markUpNeeded input value was True, MarkUp will
return an empty string.)

If there was some probleL which prevented Mark Up from carrying out judging in the usual way, the
judging will be aborted and an error message will be returned in place of the usual string. This error
message will give a brief description of the nature of the problem and will always be prefaced by a single
"%" character. This will be true even if no markup was requested. Hence, HyperCard can look at the first
character of the Mark Up XFCN return to see whether the return is an actual markup string or an error
message and act accordingly.

The Mark Up XFCN may also return information in four other global HyperCard variables:

theMarkUpReturnValues A list of comma-separated items. Usually, the first item will
be "True" (if the response was judged OK), or "False" (if it
was judged NO). The remaining items contain additional
information about the match. (If spellingOnlyNeeded
is not " x" , however, the return will be different.) This
information is returned every time MarkUp is called.

theMarkUpMaps

theMarkUpParamDisplay

theMarkUpDebug

If markup maps were requested, they are placed in this variable,
a response-to-model map in the first line, and a model-to-
response map in the second line. This information is returned
only if the input parameter ma rkUpMapNeeded is set to
True.

If a display if judging parameters was requested by setting
parameterDisplayNeeded one of the non-default
options, then the requested information is returned in this
variable.

Reports technical information on the operation of Markup.
This global is intended for development purposes and is created
by MarkUp only if the debugNeeded is turned on.

IMPORTANT: If you have not requested the map or parameter display information, then the values of the
three global variables theMa rkUpMaps, theMarkUpPa ramD i splay and theMarkUpDebug are left
unchanged. Specifically, they will not be set to empty, and the information they contain may be out of
date. It is up to your HyperCard script to make sure that any information you read from these globals is up
to date. In contrast, the values in theMarkUpReturnValues are updated each time MarkUp is called,
whether you request it or ni A, hence they are always current.

The information returned in these global variables can be inspected visually with the HyperTalk debugger
facility, or by PUTing a copy into a field. Or it can be read directly by your scripts. Neither you nor your
program will be able to make any sense out of the information returned, however, unless you know how it
is formatted. The details of formatting are explained in the following paragraphs.

theMarkUpReturnValues always returns information about the match between model and response.
The nature of the information, however, depends on the value of the input parameter
spellingOnlyNeeded.

If spellingOnlyNeeded was "x" (the normal case), indicating a standard word-to-word matching, then
t heMa rkUpRet u rnVa lues returns a comma-separated list of four values: judgedOk, pMatched,
pNoninversion, and aveDist. The meaning o; these items (in the order they appear in the returned list) is:

iudgedok This item will be "true" if the response matched the model, or
"false" if it did not. A match is defined relative to the current
values of tolerance for misspellings, extra words, and word
order. This return value can be used to make decisions about
feedback and branching after a response has been judged.

15

16

pMatched

pNoninversion

aveDist

However, if something goes wrong during the judging process,
so that judging could not be completed in the normal manner,
judgedOk will be set to "false". Consequently, you should not
use this value to make instructional decisions without also
checking the markup string to see if an error occurred.

This value, which ranges from 0.0 to 1.0, measures the
proportion of words matched. It is computed by dividing the
number of matched words by the total number of word types
(non-identical words) in the model and response combined,
excluding ignorable words. Equivalently, it may be thought of
as the cardinality of the intersect of the set of model words and
the set of response words, divided by the cardinality of their
union.

This value, which ranges from 0.0 to 1.0, measures the
proportion of words which are in correct order by dividing the
number of inversions in the solution into the total number of
non-ignorable words in the response. Unmatched words
(including ignorable words) are excluded when computing this
inversion count.

This value, which ranges from 0.0 to 1.0, is computed as the
average edit distance between model-response words pairs
which were actually matched. It provides a measure of how
well the model fits the response with respect to spelling.

If the value of spell ingOnlyNeeded was "r" or "p" which simply requests a least-cost edit trace for
the model and response strings, then t heMarkUpRet urnVa hies returns a list of two comma-separated
items: rawEditDistance, normalizedEditDistance

Remember that the values in theMarkUpReturn Values are returned automatically each time you call
MarkUp. You do not need to request this information, and indeed you cannot prevent it from being
computed and returned.

theMarkUpMaps returns information about how the response words are matched with words in the
model. An example will clarify this:

Model: The quick brown fox (jumped leaped] over the lazy dog

Response: The brown quick fox walked over the big lazy dog. (19)

If a markup map is requested for this model and response, the value returned in t heMa rkUpMaps will be

1,3,2,4,0,6,7,0,8,9
1,3,2,4,0,6,7,9,10
1,5,11,17,21,28,33,37,41,46 (20)

The first line of (20) is a response-to-model map. It will have as many comma-separated items as there are
words in the response. The first position of this list corresponds to the first response word, the second
position to the second response word, and so on. The number in each position tells which model word is
paired with that position. In case no model word is paired with a particular response word, 0 is returned in
that position. Thus, in the above example, line 1 indicates that response word 1 goes with model word 1,
response word 2 goes with model word 3, response word 3 goes with model word 2, response word 5 is
unmatched, and so on.

The second line of (20) is a model-to-response map. It. will have as many comma-separated items as there
are word positions in the model (a synonym list counts as one word position, and an ignorable word list

17

does not count at all). The first list position corresponds to the first model word, the second to the second
model word, and so on. The value in each position tells which response word is paired with that position
in the model. If no response word is paired, this fact is represented by the presence of "0" in that position.
In the example above, line 2 indicates that model word 1 is associated with response word 1, model word 2
with response word 2, model word 3 with response word 2, model word 5 is unmatched and so on

The information in the two maps obviously overlaps, and in fact when there are no missing or extra words
they give identical information. But because either model or response words may remain unpaired, both
maps are needed to completely specify the match.

The third line of (20) contains information about the starting character number of each response word, as
computed by Mark Up. For example, the first word occupies characters 1-4 of the response, the second word
characters 5-10, and so on. This is different from the HyperCard definition of a word, because Mark Up
includes the space or other punctuation mark immediately preceeding a word as belonging to that word, as
well as trailing spaces up to the next word. These pointer can be used not only to pull individual "words"
out of the response string, but also the markup substring which corresponds to that word out of the markup
string. Note, however, that the markup string has an extra leading character (to accomodate a symbol for
missing words at the beginning of the response), and possibly an extra trailing character (to accommodate a
symbol for missing words or letters at the end).

The global variable theMarkUpPararaDi splay will return different kinds of information depending on
how you set pa rameterDisplayNeeded when Mark Up was called. In every case, there will be at
least two lines. The first will consist of the string "MUParamDisplay" immediately followed by a single
letter which identifies the type of information. Successive lines contain the actual information. (The
following examples show the information which will be returned when all the default values are in effect.)

If you use "v" as an input value of paramDisplayNeeded, the return will be of this form,

MUParamDisplay v
Markup XFCN 2.0 18 Aug 93, 12:47 PM - R. Hart UI/0C Language Learning Laboratory

the second line of which identifies the Mark Up XFCN version number and by date and time of compilation.

If you use "b" as an input value of pa ramDisplayNeeded, you will get back information in
theMarkUpParamDisplay about the base characters corresponding to various characters, in this
format:

MUParamDisplay b

A.,a,k=a,c=c,t=e,A=n,O=o,O=u,d-a,A=a,a=a,a=a,,A=a,S=a,c-c,e=e,e=e,e=e,e=e,i=i,i=i,1=i,i-
i,A=n,6=o,6=o,emo,o=o,6=o,6=u,1:1=u,O=u,U=u,A=a,A=a,0=o,9=y,Y=y,A=a,E=e,A=a,=e,t=e,I=i,

Here each HyperCard item is of the form C=B. This denotes that the base character of C is B. Only those
characters which are actually accented appear in this list. If a character is not in the list, this means that is
has no accent and thus is its own base character.

If you use "d" as an input value of paramDisplayNeeded, then you will get back information in
theMarkUpPararnDisplay about the diacritic of each letter, in a format similar to that used for base
character.

MUParamDisplay d

A=4,c=7,t=1,R=8,0=4,0=4,6=1,6=2,41=3,a=4,a=8,c=7,6=1,6=2,6=3,6=4,1=1,i=2,1=3,1=4,n=8,6-
1,(5=2,6=3,6=4,6=8,1)=1,i1=2,0=3,0=4,A=2,A=840=8,V=4,?=4,A=3,E=3,A=1,=4,=2,1-1,1=3,1-4,
1=2,61,6=3,6=2,01,0-3,0-2

18

Each HyperCard item will be of form C=N, where C is a character, and N is an integer between 1 and 14.
Each integer represents the value of a diacritic, thus

0 no_aceent
1 acute
2 grave
3 circumflex
4 dieresis
5 umlaut
6 supero
7 cedilla
8 tilde
9 subdot
10 superdot
11 subhat
12 superhat
13 subhook
14 macron

This set of diacritics is hard-coded into the PASCAL program for MarkUp and cannot be modified without
changing the list ofdiacritic_variants in the PASCAL globalTYPE declaration.

Characters which are not accented will not appear on the list. If a character ;s not on the list, this means
that it has the default diacritic type 0 = no...accent.

If you use "c" as the input value of pa rarnDisplayNeeded, then you will get back information in
theMarkUpParamDi spl ay in this form:

MUParamDisplay c
A, B,C,D, E, F,G, H, I, J, K, L,M, N, 0, P, Q, R, S, T, U, V, W, X, Y, Z

The second line is a comma-separated list of all the characters which are currently classified as upper-case.
Only the upper-case characters are displayed. If a character is not on this list, it is classified as a lower-case
character.

If the input value of pa ramDi splayNeeded was "h", then information about the phonetic value of the
characters will be returned in theMarkUpParamDisplay:

MUParamDisplay h
=1, -1, -1, =1, =1, \=1, =1, =1, =1, =1, =1, np=1, para=1, =1, =1, =1, =1, =1, =1, =1,

=1, =1, =1, =1, =1, .=1, =1, =1, =1, -1, -=1, =1, !=1, "=1, #=1, S=1, %=1, &=1, ' =1, (=1,) =1,

*=1, +=1 =1, h=1, .=1, /=1, 0=1,1=1, 2-1, 3-1, 4-1, 5-1, 6=1, 7=1,8=1, 9=1, : =1, ; =1, <=1, ==1, >-1,

?=1,@=1, A=0,13=1, C=1, 0=1, E=0, P=1,G=1, H=1, I=0, J=1, K=1, L=1,M=1, N=1, 0=0, P=1, Q=1, R=1, S=1,

T=1, U=0, V=1, W-1,X=1, Y-0,2=1, \ =1,) -1, ^=1,_=1, =1, a=0,b=1, c=1,d=1,e=0, f=1, g-1, h=1,

1=0,)=1, k=1, 1=1, m=1, n=1, 0=0, p=1, q=1, r=1,s=1,t=1,u-0, v=1, w=1, x=1, y-0, z=1, (=1, 1=1,)=1,

-1, =1, A-o, -c),11--1,6-o, 0-o, a=o,a-o, a=o, A=0, A-0, a=0, c=1, 6=0,6=0, e=0, 6=0, 1=0,
1=0,1=0,1=0, n=1, 6=0, (5=0, 6=0,6=0, 0=0, 0=0, 0=0, 0=0, 0=0, T=1,e=1, c=1, E.=1, §=1, =1, 4=1,13=1,

0=1, 0=1,114=1, =1, --1,3*=1,E=0,0=0,c==1,±=1,5=1,Z=1, Y=1,11=1,3=1,E=1,11-1,n-1,1-1, -1, -1,

i1=1,m=0,13=0, z=1, = 1,-+= 1 ,J =1, f=1,=1.05=1,«=1,»=1,...=1, =1, A=0, A=0,0=0,CE=0,ce=0, -1, -1,

"=1, >=1,11=1,11=1, i=1, =1, , =1, E=0,

A-0, t-0, t=o, 1-0,6=o,O=o,d=1,0-o,0-0,0-0,0-0,1=1, --1, -1, -1,
=1 1 =1 -1

Here the second line consists of a list of comma separated items of form C=P. C is a character and P is an
integer value which corresponds the phonetic category of C. The current possible values of P are

0 vowel
1 consonant
2 phon3

ti 4

19

3 phon4
4 phon5

The phonetic value of every character is returned, in character-code order. In courier and most other fonts,
the first 32 characters are control characters and will display as blank boxes. The 44th character, which is
the comma, displays this way

=1,

thus creating a spurious empty item at the 44th position. This must be taken into account when using the
HyperCard ITEM chunk designator to parse this information.

If you enter "p" as the value of pa ramDi spl ayNeeded when you call Mark Up, then you will get back
in theMa rkUpP a ramDi splay a list of all the characters that count as punctuation. This example
displays the default value for the set of punctuation characters:

MUParamDisplay p

!(),.:;<>?()

The list occupies two lines because the first character is a return character which displays as a carriage
return/line feed. The second character is a space, and the third an exclamation mark.

If you enter "w" as the value of pa rarnDi spl ayNeeded when you call MarkUp, then a list of nine
comma-separated items will be returned in theMa rkUpP a rarnDi splay :

MUParamDisplay w
20,20,30,20,1,1,0.35,0.67,0.2 J
These nine items represent the values of the following parameters which are used in the spelling analysis
(the values shown in this example are the default values):

item 1
item 2
item 3
item 4
item 5
item 6
item 7
item 8
item 9

winsert 20
wdelete 20
wchange 30
wtranspose 20
wcap 1

waccent 1

cutoff 0.67
prop errors 0.35
nuioncriterion 0.2

Entering a value of "f" for pa rarapisplayNeeded will cause t heMarkUpP a ramDi splay to
contain information on the various judging flags in this format:

MUParamDisplay f

false,false,false,true,true,true,true,false,f

The second line contains a list of nine comma-separated items which control the way judging is performed

GJ

20

item 1 anyOrderOk
item 2 extraWordsOk
item 3 misspellOk
item .4 wordMarkUpNeeded
item 5 runtogetherNeeded
item 6 adjtstNeeded
item 7 shortCut
item 8 markUpMapsNeeded
item 9 paramDisplayNeeded

Finally, if you use 'Is" as an input value of paramDisplayNeeded, then
theMa rkUpDi splayPa rams will contain a 12-character list of all the markup symbols:

s

+--XtIgx\..><[

The meaning of a character depends on its position in the list:

char 1 addcap
char 2 dropcap
char 3 accentemx
char 4 extraword
char 5 missingword
char 6 moveword
char 7 extraletter
char 8 missin3letter
char 9 substituteletter
char 10 transposeletterl
char 11 transposeletter2
char 12 runonword

underscore
underscore
tilde
capital x
capital delta
double leftward arrow
lower case x
backslash
equal sign
left angle bracket
right angle bracket
left square bracket

If you use "m" is the value of paramDisplayNeeded, theMarkUpParamDisplay will contain the values of the
phon_matrix matrix discussed earlier. Since there are 5 possible character categories, phon_matrix is a 5x5
matrix and contains 25 entries. The first entry corresponds to row 1, column 1; the second entry to row 1,
column 2; ... the sixth entry to row 2, column 1, and so on. Row M, column R contains the cost of
replacing a character of type M by one of type R:

MUParamDisplay m
30,36,36,36,36,36,30,36,36,36,36,36,30,36,36,36,36,36,30,36,36,36,36,36,30

EXAMPLE 1: MARKING UP A RESPONSE IN HYPERCARD

Here is a simple annotated example of how to use MarkUp to do the answer judging in your own stack. It
assumes that the current card has a card field called "prompt" where a question is displayed, and a second card
field called "response" where the student will type in a response to the question. A third card field named
"markup" must be located below the "response" field. It will be used to display the markup feedback. If
card field "markup" does not exist, it can be created and positioned by executing the setUpMarkUp handler,
as explained below.

The following handlers should be placed in the card script if MarkUp is only needed on one card. If MarkUp
will be needed throughout the stack, put these handlers in the stack script and change the openCa rd and
closeCard handlers to openStack and closeStack handlers.

21

Before you can use Mark Up, you must attach the stack which contains the Mark Up XFCN. This stack is
named "markUp XFCN 2.0" in the software distribution of Mark Up. Besides the code resource which
implements Mark Up, the stack contains in its stack script a number of handlers useful for integrating
Mark Up into HyperCard programs.

on openCard

-- If the markUp XFCN stack is located in some other folder, change
- - the path accordingly.

start using stack "myFolder:markUp XFCN 2.0"

-- This enables use of the markUp XFCN. Parameter value "response" is
-- the name of the field where the student will type in a response.
- - It must be a CARD field.

setUpMarkUp "response"

-- Ask a question to elicit a written response. In a real drill program,
- this would be done somewhere other than in OPENSTACK, e, g., in

-- the handler which presented the next drill item.

put "Type in the French words for the numbers 1 to 10." into card field
"prompt"

end openCard

on closeCard

markUp XFCN uses a lot of space, so disconnect it as soon as it's not
-- needed.

stop using stack "myFolder:markUp XFCN 2.0"

end closeCard

22

on judgeResponse

-- This handler contains the commands to to the judging and the markup.
-- It must be called from the response field.

-- The following globals MUST be declared in any handler that calls
-- the MarkUp XFCN, because MarkUp may examine their values with callbacks.

global theMarkupReturnValues, theMarkUpSymbols, theMarkUpPunctuation,
the MarkUpParameters, theMarkUpCharInfo, theMarkUpParamDisplay,
theMarkUpMaps, theMarkUpDebug

-- Erase any previous markup.
put empty into card field "markUp"

-- Copy the correct answer string into a variable. In a real drill program,
-- this might be done in the handler that present the item.
put "un deux trois quatre cinque six sept huit neuf dix" into model

-- Execute the MarkUp XFCN and store markup string which is returned.
put markUp(model, card field "response") into markUpString

--Use returned values to generate feedback display.
if (item 1 of theMarkUpReturnValues = "True") then

-- If resonse was judged correct, no markup required.
put "OK" into card field "markUp"

else
-- If response had errors, display markup string.
put markUpString into card field "MarkUp"

end if

end judgeResponse

In addition the following handlers must be placed in the script of the card field where the response is typed
(in this example it will be card field "response"):

on returnInField

judgeResponse
show card field "markUp"

end returnInField

on keyDown ch

put the selectedchunk into s
hide card field "markup"
select s
pass keyDown

end keyDown

This returnInField handler causes response judging to begin as soon as the student presses the
RETURN key. The keyDown handler makes the markup disappear as soon as the student begins to edit

2cs

23

the response. It is important to do this because when the response string changes, the markup becomes
invalid (e.g., if the student deletes letters, some markup symbols may no longer be under the right letters).

Executing the setupMa rkUn handler changes the default font of the response field to be "Courier" (but
does not change any other text properties). This change to a fixed-width font is required so that the markup
symbols will be properly alligned beneath the letters of the response. It is not essential to use Courier; any
non-proportional font will do, but setUpMarkUp must be modified if you want to use some other font.
If you use the MarkUp XFCN only to judge the response and do not intend to display the error markup,
then you need not execute setUpMarkUp at all.

IMPORTANT: SetMarkUp installs the "markup" field behind and slightly below the response field. It
assumes that the response field is only a one line deep, and that it has been shaped so that the bottom of the
field is immediately beneath the longest descender. If your response field is not configured this way, the
markup characters may be completely hidden by the bottom of the response field.

For expository simplicity, the judgeResponse handler above supposes that the judging proceeded
normally. In actual courseware, the markup string should always be checked so that error conditions such
as too many letter in a word or words in a sentence can be detected and the student informed that the "NO"
judgment was due to a special problem. Whenever there is some problem which prevents judging from
being completed, MarkUp returns, instead of the normal markup, a string which begins with the character
"%". The remainder of the string gives a brief description of the problem. To use this feature, modify the
code in judgeResponse along these lines:

--Use returned values to generate feedback display.

if (char 1 of theMarkUpString - "%") then Check for error.
delete char 1 of theMarkUpString -- Get rid of the "%" char.
answer "There was a problem judging you answer:" & return &
theMarkUpString & return 6 "Please try again." with "OK"

else
if I item 1 of theMarkUpReturnValues = "True") then

-- If resonse was judged correct, no markup required.
put "OK" into card field "markup"

else

-- If response had errors, display markup string.
put markUpString into card field "MarkUp"

end if
end if

EXAMPLE 2: MODIFYING THE MARKUP AND PUNCTUATION LISTS

The following HyperCard program segment illustrates how the details of judging and the appearance of the
markup can be manipulated by resetting the global variables theMarkUpPunct uat ion and
theMarkUpSymbols:

BEST COPY AVAILABLE

24

global theMarkUpSymbols, theMarkUpPunctuation

- Change some of the markup symbols. New symbols are:
"?" extra word, """ - make upcase, """ make downcase, "'" = extra letter,
"-"" = transposed letters, "-" = incorrect letter, "'" = missing letter.

put ""-?(14("'"""[" into theMarkUpSymbols

- - Change punctuation so that a hyphen will be treated as a word separator, and
- the final period will be judged.

put ("-?!,:;()()" i space & return) into theMarkUpPunctuation

These commands can be executed any time before the Mark Up XFCN is called. They changes which they
cause will persist until you reset the global variables again. The above modifications in the markup
symbol and punctuation lists will result in markups like the following:

Model: The quick brown fox jumped over the lazy dog.

Reponse:
Markup:

the qick prown foxx jumpde the big-Lazy dog over
O ??? (21)

The spelling- and case-error symbols have been chosen so that they are smaller and higher in the line than
the defaults. This results in a less cluttered spelling markup and clearer visual distinction between the
spelling and the word-order symbols. On the other hand, the meaning of the spelling symbols may be
somewhat less obvious. Notice that the omitted period at the end of the response is now marked as a
missing character, and that "big" and "lazy" are judged as separate words, in keeping with the changes made
to theMarkUpPunctuation.

The spelling and word-order markups can easily be separated by changing the values of the input parameters
misspellOk, anyOrderOk, and extraWordsOk. This permits the two types of errors to be dealt with
separately by modifying the judging in example 1 in this way:

global theMarkUpReturnValues

-- Allow word order and extra word errors. Such errors will not be judged or marked
-- during this call to MarkUp.

put markUp(model, responseTrue,True) into spellMarkUp
put item 1 of theMarkUpReturnValues into wordOrderOk

-- Allow spelling errors. Such errors will not be judged or marked during
-- this call to MarkUp.

put markUp(model, response,True) into wordOrderMarkUp
put item 1 of theMarkUpReturnValues into spellingOk

-- If there were any word order or extra word errors, mark them up.
- Otherwise, mark any spelling errors. If no errors of either kind are
- present, judge OK.

If wordOrderOk = "False" then
put "First, correct your grammar problems" into card field "feedBack"
put wordOrderMarkUp into card field "markUp"

else if spellingOK = "False" then
put "No. Let's look at your spelling errors." into card field "feedBack"
put wordOrderMarkUp into card field "markUp"

else

eno if
put "OK" into card field "feedBack"

EXAMPLE 3: JUDGING WITH MULTIPLE RIGHT AND WRONG ANSWERS

A common instructional situation is for a question to have several alternate correct answers. In addition the
courseware author may have anticipated several incorrect answers, each of which requires its own specific
feedback. Of course, the student's typed response may not exactly match any of the anticipated (correct or
incorrect) answers, due to misspellings and other errors. An adequate response analysis requires matching
the response against each of the models and determining which one provides the closest match. The
Mark Up XFCN returns three numbers which measure goodness of match: pMatched (percent of words
matched), pNoninv (percentage of words in correct order), and aveDist (the average edit distance between
words in matched pairs). Whenever Markt is called, these numbers are returned as items 2, 3, and 4 of the
HyperCard global variable theMarkUpRei.urnValues.

To determine best fit, these numbers must be combined to provide a single goodness-of-fit metric. Of
course, a response which is judged "OK", and is thus error-free relative to the current settings of the
extraWordsOk, wrongOrderOk and misspelledOk flags, should always fit better than any response which is
judged "NO': beyond this, however, the relative contribution of these three factors in providing an intuitive
good fit is not clear. Further empirical study is required but has not yet been undertaken. Lacking data, we
can as a first approximation suppose that all three factors are weighted equally, so that the metric will be

BEST COPY AVAILABLE

Si

25

26

goodnessOfFit := 1.0, if judgedOk is True
(3*pMatched *(1 - aveDist) + pNoniv)/4, if judgedOK is False

(22)

Here, 1 has been subtracted from aveDist so that values will range from 0.0 (no fit) to 1.0 (perfect fit), as
with the other two quantities. The resultant value of goodnessOfFit will vary between 0 and 1.0, although
that is not crucial for the application we are developing here.

Supoose now that we have these data for a single question contained in a card field named "item":

Complete this sentence: Ice cream tastes than spinach.

answer Ice cream tastes better than spinach
Yes, I agree.

answer Ice cream tastes worse than spinach
I don't think so, but if you think so, OK.

wrong Ice cream tastes gooder than spinach
"good" has a special comparative form: "better".

wrong Ice cream tastes more good than spinach
"more" is used to form the comparative of multi-syllable adjectives.

wrong Ice cream tastes more better than spinach
Use either "more" or "-er" to form the comparative, not both at once!

These data are formated as follows: the first line is the prompt. Specifications for the correct and wrong
answers, and for feedback, follow on the remaining lines. The end of the data is marked by a "#" symbol in
column 1. A correct answer must occupy only one line and is indicated by the word "answer" as the first
word of the line. Similarly, a wrong answer is indicated by the word "wrong" as the first word. All the
lines that come after an answer but before the next answer (here indented for readability) are the feedback
which will be shown if the preceeding answer is the best match for the response.

on showPrompt

-- Copy data into global variable ITEMDATA and display prompt to student.

global itemData

put card field "item" into itemData
put line 1 of itemData into card field "prompt"

end showPrompt

27

on returnInField

Compair typed resonse to the answer in global var ITEM and find best match.
- Display feedback and markup which goes with best matched answer.
- If no aswer is matched, display "NO"

global itemData

- Search itemData for best ans.
put findBestAns(target, itemData) into bestAns

put item 1 of bestAns into bestFit

if (bestFit = 0) then
put "NO" into card field "feedBack" -- No answer matched.

else
put item 2 of bestAns into bestLine
put item 3 of bestAns into bestMarkUp
put word 1 of line bestLine of itemData into polarity -- Ans or Wrong?
if (polarity - "answer") then

put "OK" into card field "feedBack" -- Matched correct answer.
else

put "NO" into card field "feedBack" Matched wrong answer.
end if

repeat with i = bestLine + 1 to number of lines in itemData -- Find feedback.
if (word 1 of line i of itemData is in "answer wrong #")

then exit repeat
end repeat

put line bestLine + 1 to i - 1 of itemData aft.,.r card field "feedBack"

end returnInField

28

function findBestAns response, itemData

Scan through all correct and incorrect answers in ITEMDATA and find
the one which matches RESPONSE best.

ANSDATA must contain answer 6 feedback data, formated as shown above.
Return is a list of three comma-separated items:
Item 1: Goodness value of best-matched answer (0 if no match).

Item 2: Line number within ITEMDATA of best matched answer.
Item 3: Markup string which goes with best matched answer

global theMarkupReturnValues, theMarkUpSymbols, theMarkUpPunctuation,
the MarkUpParameters, theMarkUpCharInfo, theMarkUpParamDisplay,
theMarkUpMaps, theMarkUpDebug

put 0 into bestFit
put empty into bestLine
put empty into bestMU

repeat with I = bestLine + 1 to number of lines in itemData
put line i of itemData into m
if (word 1 of m = "answer") or (word 1 of m = "wrong") then

delete word 1 of m
put markUp(m, response) into mu

put item 1 of theMarkUpReturnValues into match
if (match - "True") then

put item 2 of theMarkUpReturnValues into pMatched
put item 3 of theMarkUpReturnValues into pNonlnv
put item 4 of theMarkUpReturnValues into aveDist
put (pMatched + pNonlnv + 1 aveDist) / 3 into ansFit

if (ansFit > bestFit) then
put ansFit into bestFit
put i into bestLine
put mu into bestMU

end if
end if

end repeat

end if

return (bestFit L "," 6 bestLine 6 "," 6 bestMU)

end findBestAns

The f indBestAnso function simply searches through the answer data looking for each "answer" or
"wrong" specification. Whenever one is found, it is matched against the response. If there is a match and
that match improves on the best of the previous matches, the current match is made the best one.
Eventually all the answers are examined and the information about the best matched one is returned.

EXAMPLE 4: USING THE MARKUP MAPS TO CONTROL VOCABULARY HELP

When writing foreign language courseware, a simple graphic markup is often not specific enough as error
feedback. If, for example, the student is ignorant of certain vocabulary words required by the response, a
missing or unidentified word markup may not provide sufficient help. The handler below uses the markup

29

maps to see which words in the model are not matched by words in the student's response, and given
vocabulary help on just those items. As before, we will suppose three card fields named "prompt",
"response", and "markUp", and in addition one called "vocHelp", where vocabulary help will be displayed.

on presentltem

global correctAns, vocList

put "Translate to French: She read the last ten page pages for us."
into card field "prompt"
put "Elle nous a lu les dix dernieres pages." into correctAns

-- The items in this list correspond to words in the correct answer.
put "Elle,nous,avoir,lire (irreg),1e/la,dix,dernier,page (f)" into vocList

setUpMarkUp "response"

end presentltem

on judgeResponse

global theMarkupReturnValues, theMarkUpSymbols, theMarkUpPuntuation,
the MarkUpParameters, theMarkUpCharinfo, theMarkUpParamDisplay,
theMarkUpMaps, theMarkUpDebug, correctAns, vocList

-- Request return of markup maps by setting markUpMapsNeeded to True..
put markUp(correctAns, target True) into markUpStrinq

--Use returned values to generate usual markup display.
if I item 1 of theMarkUpReturnValues a "True") then

-- If response was judged correct, no markup required.
put "OK" into card field "markUp"

else
If response had errors, display markup string.

put markUpString into card field "MarkUp"
end if

Use markup map to generate additional vocabulary help.
put line 2 of theMarkUpMaps into MtoRMap -- Model-to-response map
repeat with i = 1 to numoer of items in MtoRMap

if (item i of MtoRMap = "0") then
put (word i of vocList & return) into card field "vocHelp"

end if
end repeat

end judgeResponse

on returnlnField

-- This handler must be in the script of card field "response"

judgeResponse

end returnInField

1

30

EXAMPLE 5: USING MARKUP MAPS TO JUDGE LISTS

Many questions solicit answers in the form of a list, for example, "Name the five Great Lakes", or perhaps
"Name at least three of the five Great Lakes". In such cases, the order in which items are listed is not
relevant, only the fact that they are present somewhere in the response. The first case, "Name the five Great
Lakes" can be easily provided for by setting anyOrderOk (the 5th parameter slot) to T rue when the
MarkUp XFCN is called:

get markup("Michigan Superior Huron Algonquin Ontario", target,,,True)

Missing words, extra words, and misspellings will still be marked appropriately, but any order at all will be
accepted. Punctuation, as usual, will be ignored when doing the judging, so the student may use spaces or
any other kind of punctuation to separate words. Note, however that anyOrderOk operates on individual
words, not phrases, so that a question like "Name the Dakotas" cannot be reliably judged using

get markUp("North Dakota South Dakota", target,True)

because answers like "South Dakota Dakota North" will be judged as correct. There is no way to define or
manipulate phrases in version 2.0 of the MarkUp XFCN.

The response to a question like "Name at least three of the 5 Great Lakes" can be handled efficiently with
the help of the markup maps, using handlers like these:

function countlnstances list, object

-- LIST must be a list of comma-separated items.
-- OBJECT is a value to match to each item (case and accent ignored).
-- Return is number of times OBJECT occurred as an item in LIST.

put 0 into count
repeat with i 1 to number of items in list

if (item i of list object) then add 1 to count
end repeat

return count

end countlnstances

31

on judgeResponse

global theMarkupReturnValues, theMarkUpSymbols, theMarkUpPunctuation,
the MarkUpParameters, theMarkOpCharInfo, theMarkUpParamDisplay,
theMarkUpMaps, theMarkUpDebug

put "Michigan Superior Huron Algonquin Ontario" into correctAns

-- Set anyOrderOk and markUpMapsNeeded to True.
put markUp(correctAns, targetTrue , , True) into markUpString

put line 1 of theMarkUpMaps into RtoMMap -- Response-to-model map.
put line 2 of theMarkUpMaps into MtoRMap -- Model-to-response map.
put countlnstaces(MtoRMap, "1") into numCorrect
put countlnstaces(RtoMMap, "0") into NumIncorrect

if (numCorrect >= 3) and (numIncorrect = 0) then
put "OH" into card field "feedBack"

else
put "NO" into card field "feedBack"
put markUpString into card field "markUp"

end if

end judgeResponse

The function count Ins t a ce s () is used here to count both the number of lakes which are matched and
the number of response words which are unmatched and thus do not correspond to any lake. If three or more
lakes were matched, and there were no incorrect lake names, then the student has successfully answered the
question. Otherwise, the markup is shown; this will mark any incorrect lake names as extra words.

EXAMPLE 6: A COMPLETE VIEW OF JUDGING PARAMETERS

When using MarkUp to develop new courseware, it is sometimes convenient to collect and view
information on all of the judging parameters. This can be easily done with the following HyperCard
function:

function fullParamInfo

global theMarkupReturnValues, theMarkUpSymbols, theMarkUpPunctuation,
the MarkUpParameters, theMarUpJudgingTables, theMarkUpParamDisplay,
theMarkUpMaps

put "nbdchpvfm" into typeList
put empty into r

repeat with i = 1 to length(typeList)
get markUp((char i of typeList)) -- Puts info into global.
put (theMarkUpParamDisplay G return 4 return) after r

end repeat

return r

end fullParamInfo

i

32

Notice that the Mark Up XFCN is called with null model and response strings; since the object here is not
to get a markup, but to retrieve information about the current markup parameters, entering strings to be
judged is unnecessary. Only the 12th parameter, which specifies the tr.-- of information to be returned, is
systematically varied by having the loop step through the list "nbdchpvfm". Each call returns a result
which is appended to the temporary variable r. Calling this function and putting the return value into a
field, e. g.,

put fullParamInfo() into card field "parameterDisplay"

will yield a formated display like this one:

MUParamDisplay n
Markup XFCN 18 Aug 93, 12:47 PH - R. Hart UI/UC Language Learning Laboratory

MUParamDisplay b
A=a,A=a,c=c,t=e,N=n,O=o,O=u,6=a,,A=a,a=a,a=a,A=a,A=a,c=c,e=e,e=e,6=e,e=e,i=i,i=i,I=i,i=
i,A=n,6-0,6=0,6=o,8=o,t5=o,O=u,U=u,0-u,(1=u,A=a,A=a,0=o,y=y,?=y,A=a,E=e,A=a,=e,E=e,I=i,
T=i,T=i,I=i,(5=o,6=o,O=o,O=u,O=u,O=u

MUParamDisplav d
A=4,c=7,E=1,R=8,6=4,C=4,A=1,A=2,A=3,A=4,A=8,c=7,6-1,e=2,6-3,6-4,i=1,i=2,1=3,1=4,n=8,6=
1,6=2,6=3,6=4,6=8,0-1,0=2,0=3,U=4,A=2,A=8,0=8,9=4,Y=4,A=3,E=3,A=1,t=4,E=2,I=1,i=3,1=4,
1=2,6=1,6=3,0-2,0=1,0=3,0=2

MUParamDisplay c
A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z

MUParamDisplay h
=1, =1, =1, =1, =1,\=1, =3, =1, =1, =1, =1,=1, =1, =1, =1, =1, =1, =1, =1, =1, =1,

=1, =1, =1, =1, =1, =1, =1, =1, =1,=1, = 1,!= 1,"= 1,#= 1,$=1,%= 1, &= 1,'= 1,(= 1,) =1, =1,

+=1=1,=1,.=1,/=1,0=1,1=1,2=1,3=1,4-1,5=1,6=1,7=1,8=1,9=1,:=1,;=1,<-1,- 1,>,1,?-1,@-1
,A=1,8-1,C=1,D=1,E=1,F=1,G=1,H=1,I=1,J=1,K=1,L=1,M=1,N=1,0=1,P=1,Q=1,R=1,5-1,T=1,U=1,
V=1,W=1,X=1,1-1,Z-1,(-1,\-1,1-1,"=1,_=1,'=1,a=0,b=1,c=1,d=1,e=0,f=1,g=1,h-1,i=0,j=1,
k=1,1=1,m=1,n=1,o=0,p=1,g=1,r=1,s=1,t-1,u=0,v=1,w=1,x=1,y=0,z=1,1=1,1=1,)=1,-=1, =1,
A=1, A=1, c=i, ta=1,0-1, 0=1, A=1, a=i, a=1, a=i, a=3., A=1, c=i, 6=1,6=1,6=1,e=1,i=1,i=1,1=1,
1=1,6=1,6=1,6=1,6 =1,8=1,0=1,0=1,U=1,0=1,0=1,t=1,°=1,<=1,E=1,§=1,=1,91=1,6=1,3=1,©=1,
Tm=1, =1,-=1,*=1,X=1,0=1,=,=1,±=1,5=1,2=1,Y=1,R=1,a=1,E=1,1i =1,n=1,1=1,*=1,9=1,a=1,,m=1,
0 =1,z=1,i=1,-,=1,4=1,f=1,m=1,A=1,e=10).-.1,...=1, =1,A=1,A=1,0=1,E=1,m=1,--1,--1,"=1,"=1,
`=1,'=1,+=1,0=1,9=1,9=1,--=1,m=1,<=1,>=1,11=1,11=1,t=1,.=1-1,=1,U=1,A=1,=1,A=1,L.=1,

T=1,1=1,6=1,6=1,1=1,0-1, O=1,0=1,0=1,1=1, ^=1, "=1, "=1, -=1, =1, =1, .=1, "=1,

,=1,-=1

MUParamDisplay p

MUParamDisplay v
20,20,30,20,1,1,0.35,0.67,0.2

MUParamDisplay f
false,false,false,true,true,true,true,false,f

MUParamDisplay m
---X,dwx\=><[

MUParamDisplay t
30,36,36,36,36,36,30,36,36,36,36,36,30,36,36,36,36,36,30,36,36,36,36,36,30

Even though the actual parameter information may wrap around several screen lines, it occupies only one
HyperCard line. The single exception to this is MUParamDisplay p, the list of punctuation symbols,
which will occupy two lines whenever the RETURN character is on the list of punctuation symbols.

33

Usually, one collects parameter information to inspect it visually and verify that the parameter values are as
intended. Sometimes, however, the program itself may need to access the parameter values. Ifso, they can
be readily extracted. The fact that each type of information occupies one line simplifies the process of
parsing out information from the display. The following HyperCard function, which returns the base
character corresponding to a specified input character, will work on either the simple base character or an
aggregate of data like that shown just above.

function findCharBase ch, paramData

PARAMDATA must contain formatted parameter display information.
-- Return is the base character corresponding to character. CH.
-- If base info is not in the PARAMDATA, return EMPTY.

repeat with i = 1 to number of lines in paramData
if (line i of paramData o "MUParamDisplay b") then

put (line i + 1 of paramData) into bList -- Base char info
put offset(ch, bList) into p
if p > 0 -- CH is in the list.
then return char p + 2 of bList Every entry has 3 chars.
else return ch -- CH is not in list, so is its own base char.

end if
end repeat

return empty -- Info on base chars not in data.

end findCharBase

When card field "parameterDisplay" contains the data shown above, calling this function with input
parameter "é"

get findCharBase("é", card field "parameterDisplay")

will return "e", which is the base character corresponding to "6".

Accent information can be parsed out in the same way. Information on case, punctuation, and phonetics of
any given character can be retrieved similarly. The following function is a predicate which will return
True if CH is upper-case and False if it is lower-case:

34

function charIsUpperCase ch, paramData

PARAMDATA must contain formatted parameter display information.
-- Return is TRUE if CH is upper-case; FALSE if it is lower-case.
-- If case info is not in PARAMDATh, return EMPTY.

repeat with i = 1 to number of lines in paramData
if (line i of paramData = "MUParamDisplay c") then

put (line i + 1 of paramData) into cList -- Case info
return (offset(ch, cList) > 0) -- Check if CH is on cL:ST.

end if
end repeat

return empty -- Info on case not in data.

end charIsUpperCase

Assuming the data shown above, this call

get charIsUpperCase("A", card field "parameterDisplay")

will return True.

EXAMPLE 7: USING THE EXACT SPELLING MARKUP

Spelling is a skill which associates with the auditory image of each word a suitable visual image. The
irregularities of English spelling do not in general permit the visual (graphic) associate to be fully predicted
from the auditory form, so a student must often visually encode the conventional graphical icon which
corresponds to each word, paying special attention to those areas of the visual image which are not
predicable from phoneme-to-grapheme rules (Simon & Simon, 1973; Simon, 1975). To facilitate visual
coding, it is important that the student not see incorrectly spellings, since these may be encoded into long
term memory and interfer with the correct coding. To facilitate visual coding it is also useful to focus the
student's visual attention on those areas of the word which have not yet been encoded correctly (i. e., which
were misspelled). The correctSpelling function below returns a display designed to satisfy these two
specifications. Incorrect and omitted letters appear as capitals, so that the student can focus attention on
those areas of the word; extra letters in the student's response are replaced by ".", which is relatively
inconspicuous, but warns the student that her visual image was not correct in this region. (This English
example neglects the possibility of capitalization or accent errors.) For example, here are the displays
returned by various misspellings of the word "necessary":

Response: nesessarey

Display: neCessary

Response: neccisary

Display: necEsSary

Since the mixture of upper- and lower-case letters is a very unusual image of word spelling, such display
string should probably be further processed in HyperCard so that the upper-case letters are changed to lower-
case boldface, sized, and perhaps color coded and displayed via 32-bit quickdraw. The missing letter symbol

35

can be further minimized by hilighting the letters on each side of the omission, then deleting the omitted
character to give displays like these:

neCessaLy

necessary
Such displays could be useful as feedback in a program that taught spelling by dicating individual words to
students (preferably in the context of a full sentence).

function correctSpelling model, response

global theMarkUpReturnValues

put markUp(model, response "r") into markUpString
put item 1 of theMarkUpReturnValues into judgement

if judgment - "False" then
put 1 into m
put 1 into r
put empty into w
repeat with i = 1 to Length(markUpString)

put char i of markUpString into c
if c = "-" then -- Chars match.

put char r of response after w
add 1 to m
add 1 to r

else if c = "\" then -- Missing char.
put upCase(char m of model) after w
add 1 to m

else if c = "x" then Extra char.
put "e" after w
add 1 to r

else if c = "=" then -- Wrong char.
put upCase(char m of model) after w
add 1 to m
add 1 to r

else if c = ">" then -- Transposition.
put upCase (char m + 1 of model) after w
put upCase (char m of model) after w
add 2 to m
add 2 to r

else if c = "<" then Already handled at ">".
end if

end repeat
end if

return w

end correctSpelling

36

function upCase c

- - Returns the upper case version of an alphabet letter C.
- - If C is not a lower-case alphabet letter, return C unchanged.

if "a" <= c and (c <= "z")

then return char(charToNum(c) charToNum("a") + charToNum("A"))

else return c

end upCase4S
Since individual words are involved, the Mark Up XFCN is called with the rawTrace parameter (slot 13) set
to "r". This forces the response to be analyzed as a single string, even if there are leading, trailing, or
internal spaces (leading and trailing spaces should be removed by your HyperCard script before the response
is submitted to Mark Up). The raw edit trace is needed here to force a markup to be computed even when the
misspelling is very bad, and because complete information about the misspelling is required to generate an
accurate spelling correction. The markup characters are then processed one at a time. Whereever the
response contains a missing or incorrect letter, the uppercase equivalent in the model is substituted, and
whereever there is an extra letter in the response, it is replaced by a "" character. When a character in the
model matches the response, then it is shown in lower-case.

TECHNICAL DETAILS AND LIMITATIONS

The most current version of Mark Up (the one documented by this report) is Markup XFCN 3.0 - 19 Dec
94, 8:20PM. To determine the version you have, execute Markup () without parameters; a version string
will be returned. The revision history of MarkUp can be found near the beginning of the PASCAL source
file. The MarkUp XFCN is compiled as a THINK PASCAL project containing the following files, in the
indicated order:

DRVRRuntime.lib
Interface.lib
HyperXCmd.p
HyperXLib.lib
MarkUpXFCN3.p

It has been tested on a Macintosh Quadra 700, running under the Macintosh Finder 7.1 and 7.5 and
HyperCard 2.1 and 2.2 launched with 2 megabytes of memory. It should, however, run under virtually any
Macintosh configuration. The user should be aware of the following limitations on the MARKUP XFCN:

Versions through 3.0 will not work properly with 16-bit char representations, i. e., with the
Macintosh language extensions.

Maximum number of letters in a single word: 22
Maximum number of words in model (including synonyms but excluding ignorables): 18
Maximum number of words in response: 18
Maximum number of characters in model: 255
Maximum number of characters in response: 255

These limitations are not intrinsic to the MarkUp algorithm, but are imposed by the fact that the MarkUp
code has to run in the limited space provided by the HyperCard stack. The compiled MarkUp XFCN project
occupies a bit more than 42700 bytes of space; the MarkUp XFCN itself occupies about 22474 bytes.
This is near the limit of the allowed size for HyperCard code resources. XFCNs borrow their space from
the HyperCard stack, so if MarkUp is run in recursive or other deeply embedded contexts, there may not be

37

sufficient stack space. Running the Mark Up XFCN in such a situation will cause the stack to overflow
into the heap and will most likely cause a hard system crash type 28 (stack has moved into application
heap), if not immediately, then soon thereafter, or at latest during exit from HyperCard. To guard against
this, the mar kUpUsingParms() function checks to make sure that there are at least 28500 bytes free on
the HyperCard stack; if not, Mark Up is not run and an error dialog appears. (Since Mark Up's word-order-
error algorithm is recursive, space requried is somewhat sensitive to the number of words in model and
response, but 28500 should be sufficient to run with the maximum of 18 words.) If you call the primitive
MARKUP XFCN, you should first use the Hyper Talk function the stackSpace to assure that this much
stack space is available.

To conserve stack space, some large MARKUP array structures have been put into dynamic memory. The
Mac Toolbox functions NEWPTRO and DISPOSPTRO are used to allocate and deallocate this memory,
which amounts to about 24K of space. If this much heap memory is not available, MARKUP aborts and
returns the error message "%Couldn't get matrix memory."

No formal speed testing was done since, even for maximum length sentences, Mark Up returns without
discernable delay.

AVAILABILITY

The Mark Up XFCN is freeware. It can ordered on diskette for a handling fee or accessed from 1-1
Contact the author for further information. Copyright of MarkUp resides with the author, but you may use
as a component of commercial or non-commercial software. If you do so, acknowledgment of the author
and the Language Learning Laboratory of the University of Illinois at Urbana-Champaign would be
appreciated. As freeware, MarkUp is offered as is, without any warranty of any kind. However, if you have
questions or encounter problems in using the package, please contact

Robert S. Hart, Associate Director
Language Learning Laboratory
University of Illinois at Urbana-Champaign
G-70 Foreign Languages Building
707 S. Mathews Ave.
Urbana, IL 61801

voice 217)-333-9776
fax (217)-244-0190
email hart@uxl.cso.uitic.edu

REFERENCES

Hart, R. (1989) Algorithms for the dynamic identification of spelling and word order errors in student
responses. Technical Report No. LLL-T-15-89, University of Illinois Language Learning
Laboratory, Urbana IL.

Rumelhart, D. & Norman, D. (1982) Simulating a skilled typist: a study of skilled cognitive-motor
performance. Cognitive Science, 6, 1:36.

43

38

Simon, H. & Simon, D. (1973) Alternative uses of phonemic information in spelling. Review of
Educational Research, 43, 115-136.

Simon, D. (1975) Spelling: a task analysis. Learning Research and Development Center Technical
Report LRDC-1975-3. Pittsburg U., Pittsburg, PA.

APPENDIX 1: LISTING OF MARKUP XFCN

4J

39

Spelling and word order markup utility, Version 3.0)

I Implemented as HyperCard XFCN in Macintosh THINK PASCAL, Version 4.0.2)

(Robert S. Hart Ul/UC Language Learning Laboratory 13 April 1994 I

Copyright 1993-4 by Robert S. Hart.

Spelling markup done by dynamic programming algorithm which generates a markup I

corresponding to a least-cost editing trace. Editing operations are restricted)

to omission of a letter, insertion of an extra letter, substitution of one
letter for another, or transposition of two adjacent letters.)

Capitalization and accent errors are also identified and marked. The user may
specify the way in which capitalization disagreements will be treated: exact)

agreement required, capital required if the model has one, or capitalization)

differences ignored.

Run-together words are identified as such if they are adjacent in the model.)

Some misspelling is tolerated in one or both run-togethers. I

Order analysis identifies extra words, missing words, and misplaced words. I

The user can specify various degrees of tolerance when defining what constitutes I

a match of the model: spelling errors can be excused; incorrect word order can)

be excused, and extra words in the response can be excused.

The order analysis returns three goodness of fit measures: proportion of
matched words, proportion of words in correct order, and average amount of
misspelling per matched word.)

When specifying correct answer, the author is allowed to specify one or
more words which will be ignored if they occur in the student's response.
Such a word or list must be surrounded by angle brackets, < >. A list of
'synonyms' (i.e., a set of words any one of which would be correct at a
given position in a sentence) must be surrounded by square brackets, ().

LIMITATIONS: I

Version 3.0 will not work properly with the Macintosh 16-bit char representation, I

i. e., with the language extensions.)

Maximum number of letters in a single word: 22 I

Maximum number of words in model (including synonyms but excluding ignorables): la)
Maximum number of words in response: la)

Maximum number of characters in model: 255)

Maximum number of characters in response: 255 I

I XFCN INPUT PARAMETERS:

Parameter number and description are show in left-hind colors..)

Permissible values are indicated in the right-hand column. Value preceeded
by asterisk is the default value assigned if the parameter is loft empty.)

1 1. model <string of 255 chars, max>

2 . response <stringof 255 chars , max>)

3-cap_flag 'exact _case" I 'authors_caps' I 'ignore_case'

1 4-extraWordsOK True I 'False)

1 5-anyOrderOK True I "False

1

5-)

6- misspellOK True I "False
7- wordMarkUpNeeded "True I False

runTogether_nueded 'True I False

I 9-djust_needed "True I eel.*

1 10-shortCut "True I False

(11-markupMapsNeeded True I 'False

I 12-parameterDisplayNeeded '<empty> I "x' I "n" I 'b' I "d" I "c' I 'h" I 'p' I 'v" I

I 13. rawTraceNswrded '<empty> I 'x' I "r" I

.p.

14. debugNeeded True I "False

I These HyperCard global var may be used to input additional information:

1 thoMarkUpPunctuation 1

I theMerkUpSymbols I

1 theMarkUpWeights
1 theMarkUpPhonMatrix I

theMarkUpCharInfo I

1 XFCN RETURN VALUES:)

((Direct fcn return value): markup string

"f 1 't'

Page 1

I

Returns in HyperCard global.:
theMarkUpReturnValues : OK/NO boolean, plus other judging flags
theMarkupMaps: : markup maps for R-TO-M on line 1, and M-TO-R on line 2

theMarkupParamDisplay: display of the requested judging table values and parameters

(if requested) I

(if requested

4' 6 BEST COPY AVAILABLE I

Page 2

I theMarkupDebug : display of requested debugging information)

(THINS(PASCAL Version 4.0.2 project requires the following files , in this order :)

I DRVRRuntime.lib
I Interface.lib
I Hypor=d.p
I HyperXLib.lib
I MerkUpICFCM3.p (this file) i

(REVISOR HISTORY FOR 3.0:

I 5 April 94 - ASH I
(Fixed problem in WORD_MARKIIP which kept spelling marks from being displayed when HOORDEROK was in effect.)

11 April 94 - ASH I

Rewrote MARK_SEXTENCE, which would destroy left substring of markup when a word with final missing letter(s) I

was followed by a missing word carat. Also rewrote DOP_CHAR for greater efficiency. I

26 May 94 - RSH I

Fixed DUP_CHAR so that it returns null string when char count is O.

Fixed markup display so that blank moveword won't shadow spelling markup on first char of word. I

Edited SET_DIACRITO initialization so that Swedish 1,A are assigned `supero diacrit. I

27 May 94 - RSH)
Decoupled internal markup symbols from user-specified symbols to prevent confusions when user specifies)

weird or ambiguous symbols. Internal symbol names begin with S le. g. Sextraletter'). Also created an
array SYMBOLMAP to map internal chars to user chars. Transformation to external symbols done in CAPMARK I
and SPELLMARKS, and SENTENCEMARKUP. Also changed internal display logic so that any user symbol set)

equal to 'nomark* (a blank space) will be transparent -- any symbols it normally shadows will appear properly.

I 16 Sept 94 - RSH I
I Rewrote code which computes NED (normalized edit distance): I

I Supposedly 0 5 NED 5 1, but in fact NED > 1 sometimes because normalizing term for RED was based on the average' I

(cost of an edit operation. Now uses maxEditlieight, computed from wchange and the phon_matrix values at time phon_matrix is I

I initialized. Normalization done on basis of max possible cost to convert a string of responses's length into one of model's
length.)

(Now 05NED51 is guaranteed.)

Rewrote code which converts NED to SHED (integer scaled normalized edit distance): I

Small NEDS became 0 when scaled to SHED integers for the sim(J array, because scale factor was too small, so significant
digits remained fractional and were lost in truncation. Made SIM (I and other variables that hold scaled NEDs into LONGINT I

and increased scale factor to 10000 so that even very smell fractions have an integer representation. Both infinity and)

oditWeightScale are now constants and are used everywhere. MaxCost has been eliminated.)

(Fixed logic error in SPELLM/URKS which failed to reset preemption flag and thus dropped all marks after the first)

(preemptive mark.)

(Edited Phon Category assignments so that upper case vowels are counted as vowels as well as lower case ones. I

(1 November 94 - RSH)

(Moved large judging matrix MARKS to dynamic memory so that code would not take so much room on HyperCard
stack. Replaced by new ptr MARKS? of type LSMATRIXP which is used to point to a new handle. Handle is disposed)
before exit.

I 30 November 94 - RSH)

I Fixed error which caused the runtogether word analysis to overwrite prqvious matching', imposing a new bogus)

(match on words which already had imperfect single-word match. Introduced new sets MAYBE and RMAYBE to keep)

track of M and R positions which have any kind of match, and used it to make sure that already matched M words)

I are not grabbed by the runtogether analysis. Now only M words which have no potential match at all can become)

I candidates as runtogether word match. Test case is I

I Model: Yesterd he I

I Respononse: He yesterd I

(Markup: - 5 (\

I Where *yeaterd' has been interpreted as runtogether of Yesterd he I

I he is set as ignorable, which leads to PMATCHED of 4/3

Also rationalized computation of PMATCHED, which is now Matched words/ total 4 words in M and in R; i. e.,)

I 2MATCHEDK / ((CARD(N I - CARD(MIGNORE)) ICARD(R) - CARD(RIGNORE))I I

I 20 December 94 - RSH)

I Edited aet_cap_info and set_phon_info in create_char_tables so that Courier upper-case accented vowels would be correctly)

identified as upper-case and as vowels.

unit markUpXFCN:

interfate

Uses
HyperNCmd:

procedure main (paramPtr: NCecIPtr); (FORWARD)

implementation

......... ----------- --)

BEST COPY AVAILABLE

Page 3

procedure main (paramPtr: XCmdFtr);

conat
versionStr - 'Markup XFCN 3.0 - 19 Dec 94, 8:20PM - 0 Robert S. Hart - OI/UC Language Learning Laboratory':

- 22; I max number of letters in word)

(WARNING: word_max must be larger than or equal to wmax!)

(max 4 positions in model and words in rasp after processing I

(max 4 of words in modal at input)

wmax 18;

word max - wmax 0;

infinity - 9999:
space
spaces
editMeightScale 10000;

(Internal markup symbols 1

Saddcap .+.: (plussign 1
Sdropcap (downarrow I

Saccenterr .- .; (tilde)

Sextrawd .X.: (captial X 1

Smissingvd .a.: i capital delta I

Smovevd 'a'; (solid leftward arrowhead
Sextraltr .x.; (small x
Smissingltr 'V; f backslash I

Ssubstituteltr I equal sign 1

Stransltrl right angle bracket 1

Stransltr2 (left angle bracket)

Srunonwd .(.; (left square bracket
Snomark ._.; (underscore)

letterErrors (Snomark, Saccenterr, .u., 'd', 'U', .D.); (Raw markup chars used to indicate case/accent errors or no error on

letter

type
inputwrange 1..word_max;
wrange 1..vmax;
lrange - -1 .)max;
wordstr - string(lmax);
str80 string(80);
wivector - array(wrange) of INTEGER;
inputwivector - array(inputwrangeI of INTEGER;
wsvector array[wrange] of wordstr;
inputwsvector array(inputwrange) of wordstr;

diacrit_variants (no_accent, acute, grave, circumflex, diarsis, umlaut, supero, cedilla, tilde, subdot, superdot, subhat,

superhat, subhook, macron);
phon variants (vowel, consonant, phon3, phon4, phon5l;
cap_flag_type (exact case, authors_capa, ignore_case):
case variants (up_case, down_case);

wordset set of wrange:
charrangt 0..255:
wimatrix - array(wrange, wrange] of INTEGER;
wlmatrix array(wrange, wrange) of IGINGINT;
limatrix array(lrange, lrange) of INTEGER:
lsmatrix array(lrange, lrange] of wordstr;
IsmatrimPtr ^1smatrix:
pmatrix array(phon_variants, phon_variants) of INTEGER;
civector array(CHAR) of INTEGER;
=vector array(CHAR) of CHAR;
choicelisttype array(wrange] of wordset;
solutionrec - record

seq: str80;
inversionk: INTEGER:
firstinv: INTEGER;

end;

iset - sot of 0..255;

var
p: Ptr;
h, ismH: handle;
mw,

rw,

wordmark: inputwavector:
rwxloc,

m_to_r,
r_to m: inputwivector;
runtogether: wivector;
pnoninversions,
peatched,
cutoff,

prop_errors,

runon_criterion: REAL;

avedist: EXTENDED:

winsert, wdelete, wchange,
vtranspose, waccent, wcap,
model, response: string;
cap flag: cap _ flag type:-

(vector of model words
(vector of response words

(vector of word markups)

(vector of response word locations
response wd matched to given model wd)

(model wd matched to response wd I
(index of 2nd run-together model wd)

(proportion non-inverted words)
(proportion words matched)

(spell check applied if length retie)

(of 2 words falls below this value)
(if edit dist between M and R word)

(exceeds this, then round to infinity I

(spelling match necessary to consider)
response word as run on

(average edit distance between matched wds
(averaged over all matched pairs)

f weights of various spelling errors
maxEditWeight: INTEGER:

(correct ens and student response I

(tells how to handle wrong cap letters

4s
BEST COPY AVAILABLE'

judgedok,
misspellok,
extrawordsok,
anyorderok,
runtogethor_needed,
word_markup_neerded,
adjust needed,
markupMapsWeeded,
shortcut,
trace: BOOLEAN;
paramDleplayNmsded,
rawTracm: CHAR;

returns Ok or No for response
(judge rasp with misspellings Ok

(lodge rasp w extra words Ok)

(jdge rasp w words out of order Ok. I

(enable/disable runtogether analysis)
(whether to generate sentence markup)

(whether to adjust for optimal solution)
(whether to return markup maps lists to HyperCard

I whether to shortcut when computing edit distance of very dissimilar words I

(enable/disable tracing output 1

(which data structure info to return to HyperCard I

(whether edit trace string returned should be raw or prettied up for display

nomark, addcap, dropcap, (markup symbols I

accenterr, ext misingwd, movewd, axtraltr, missingltr, substituteltr, transltrl, transltr2, runonwd: CHAR;
dells chars: sot of CHAR; (punctuation symbols I

mwlg, rwlq: inputwivector;
mwssg: inputwivector;
editd: lisatrix;
marks?: lamatrixPtr;
a: wlmatrix;
&set': wimatrix;

rignore, signore,
dr: ciVector;
symbolMap: =Vector;
choices: choicelisttype;
solutionlist: array(wrong.) of
rlq, alg, pig. mwk, solutionk,
mincost: LOHGINT;
runtogetherf lag: BOOLEAN;
time: REAL;

matched,

lengths of model, rasp words I

I sap of model word index to model position index
(matrix of normalized edit distances between word substrings)

=atoned, maybe, maybe: wordsst;

solutionrec;
edit disc, matchedk, rightmost, recursionk, solutions_tried: INTEGER;

(Judging tables used to control capitalization/diacritic judging)

base_char: array(CHAR) of
diacrit_info: array[CHAR)
case_info: array[CHARI of
phon_info: array(CHARI of
phon_matrix: pmatrix;

CHAR;
of diacrit_variants;
case_variants;
phon_variants;

UTILITY PROCEDURESI- - - - - - - - - - - - -

(Return ERRMSG as the XFCN's return value, and immediately exit the XFCN.

procedure FAIL (errMsg: Str255);

begin
if marks? <> nil then
disposPtr(PTR(marksP));

)atramPte.returnValue :- PasTo2ero(paramPtr, errMsg);
EXIT(Main); I exit XFCN

end; f FAIL

FAIL I

------ -------------- ------------- --------------------ReturnInGlobal
(Convenience proc for returning string value VALUE in a HyperCard global var GLOBALNAME. I

procedure returnInGlobal (globalName, value: str255);

var
h: handle;

begin
h :- pasTedero(paramPtr, value);
if h nil than
FAIL(concet('*Out of memory for return in global globalName))

else
begin

setGlobal(paramPtr, globalName, h);
disposHandle(h)

and
end; I returnInGlobal I

AppendStringToHandle I

I Append string S at the end of the' information pointed to by HANDLE. I

procedure appendStringToHandle (h: HANDLE; s: string):

var
r: OSErr;

errType: string[201;

{/

Page

BEST COPY AVAILABLE

begin

r ptrAndHand(Ptr(ORD(es) 1), h, Length(s));

if r <> 0 then
begin
case r of
memFullErr:
errType 'Memory Full':

nilHandleErr:
errType 'NIL handle';

memWEErr:
errType 'Hem block is free'

end;
FAIL(ConcatC4AppendStringToHandle error:
end;

end: (appendStringToHandl 1

rrType))

- -AppendStringToGlobal

procedure appendStringToGlobal (gName: str255; s: str255);

var
h: HANDLE:
lq: INTEGER;
hp: PTA;

begin
h getGlobal(paramPtr, gName);
lq : GetHandleSize(h);
hp : PTR(ORD(StripAddress(h")) lg - 1); (Ptr to last byte of block.)

if (1g > 0) i (hp" 0) then I If handle is non-nil and has null char terminator,)

setH4ndleSize(h, 1g - 1): (remove null char terminator.

appan'StringToHandle(h, concat(s, GHR(0))); (Append string plus null char terminator.)

setGlobal(paramPtr, gName, h);
disposeHandle(h);

end;

function NtoS (num: INTEGER): str255;

begin
numToStr(paramPtr, num, NtoS);
end; (NtoS)

NtoS

LtoS

function LtoS (lng: LIONGINT): str255;

begin
longToStr(paramPtr, ing, LtoS);

end; (LtoS

EtoS)

function EtoS (r: REAL): str255;

begin
extToStr(paramPtr, r, EtoS):

end; (EtoS)

BtoS)

function BtoS (b: BOOLEAN): str255;

begin
if b then
BtoS . 'True'

else
BtoS 'False'

end: (BtoS)

setToString I

function setToString (st: iset): str255;

var
i: INTEGER;
s: str255;

begin
a .
for i :- 1 to 30 oo
if i in at than

:44 concat(s, '1,')
else
s concat(s, '0,');

setToString s:

Page 5

1

BEST COPY AVAILABLE'

I

end; (sotToString

(------........ --------- Eq

(Convenience function to return case-insensitive equality of two strings)

function eq (al, s2: str255): BOOLEAN;

begin
eq :- stringEqul(paramPtr, sl, s2)

end; (

NthChunk)

(Return the Nth chunk of string S, where a chunk is substring lying between 1

(two DELIM characters (beginning 4 end of S are implicit delimiters). 1

function nthChunk (s: str255; n: INTEGER; dchar: CHAR): str255;

var
1, p: INTEGER;
deli,,: string;

begin

delta : dchar:
for i 1 to n - 1 do (remove first n - 1 chunks from string)

begin
p :- pos(delim, s);
if p > 0 then
delete(s, 1, p)

else if less'than n-1 chunks, return EMPTY
begin
nthChunk : '';
EXIT(nthChunk)
end

end;

p : pos(delim, s);
if p > 0 then
nthChunk :- copy(s, 1, p - 1)

else
nthChunk :- s;

end; (nthChunk)

(Nth chunk is now at front of list)

---_-_--_-__---_--_-____-_-_Inc

procedure inc (var x: integer);

begin
x : x + 1;

end; I inc)

procedure dec (var x: integer);

begin
x :- x - 1;

end; (dec I

Dec I

Max 1

function Max (x, y: INTEGER): INTEGER;

begin
if x > y then
max X
else
max :- y

end; (max)

Max)

function min (x,

begin
if x < y then
min :- x
else
min : y

end; min 1

Y: INTEGER): INTEGER;

I- - - - - - - - _------- ----------------------------- _-__----__nup_char

function dup_char (c: CHAR; 1g: INTEGER): string;

var
i: INTEGER;
s: string;

Page 6

BEST COPY AVAILABLE

begin
if lq O. 0 then
begin
dup_char ";
EXIT(dup_cher);

end;

if (1g > 255) then
lq 255;

: c;
for i :- 1 to 8 do
if length(*) < lq then
if langth(s) 128 then

Concat(s, Copy(a, 1, lq - length(s)))
else

Copy(Concat(s,), 1, lg)

else
begin
dup_char s;

exit(duP_char)
end;

end; (dup_char)

(--

(Compute the cardinality of set of type 'wordsot..)

function card (aetofwords: wordset): INTEGER;

var
k: INTEGER;

begin
k :- 0;
for i :- 1 to wmax do
if (i in setofwords) then
Inc(k);

card k;

end; (card)

DEBUG I/O

Card

(-- 1

--ShowSet)

procedure showset (s: string; at: iset);

begin
appendStringloGlobal(.theMarkUpDebug., concat(s, setToString(st), CHR(13)))

end;

See_nedit_natrix

procedure see_nedit_natrix (a: str255);

var
n, r: INTEGER;

begin
appendStringToGlobalCtheMarkUpDebucp, concat(CHR(13), .A(R,M) :

for r 1 to rlq do
begin
s ";
for at :- 1 to anek do

s : concat(s, LtoS(a(r, n(), .);

appendStringToGlobelCtheMarkUpDebug', concat('R-', NtoS(r), '

end
end: I see_nedit_natrix

CHR(13)));

CHR(13)));

........ __---_-__-_-_ Diss$LED I/O)

Following procedures disabled because MAC code resources cannot have standard I/O)

procedure pause:

begin
(readln0

end;

procedure clrScr;

begin
end;

INITIALIZE ALL STATIC DATA STRUCTURES -- JUDGING TABLES AND PARAMETERS.

Page 7

1

BEST COPY AVAILABLE

Page 8

...... -------------------Getcharcase)

function get_char_cese (i: INTEGER): zase_variants;

begin
if Char(i) in than
get_char_case :- up case

else
get_char_case : down_case

end; (get_char_case)

-------- --------- -------- - ----- ----------Force_down_case

function forcedowncase (i: INTEGER): CHAR;

begin
if get_char_case(i) up_case then
force_down_case :- chr(IORD('a.) - ORIWA.)) + 1)

else
forco_down_case :- chr(i);

end; (force_down_case 1

I- - - - - - - - - - - - - - - _ ------ -____e.t_bAso_info

procedure set base_char (c: CHAR; s: 'tree);

var
i: INTEGER:

begin
for i 1 to Length(s) do
if s(i) 0. space then
base_cher(s(ill :- c;

end; (set_base_char (

Set_diacrit_info)

procedure set diacrit_info (d: diacrit_variants; s: str80);

VAX'

i: INTEGER;

begin
for i : 1 to Length(s) do
if s(i) .0 space then
diacrit_info(s(i)) d

end; (set_diacrit_ info)

Set_cap_info)

procedure set_cap_info (c: case variants; s: str80);

var
I: INTEGER;

begin
for i : 1 to Length(s) do
if s(i) C> space then
case_info(s(ill :- c

end; (set_cap_info

Set_phon_info)

procedure set_phon_info (p: phon_variants; s: stre0);

Val."

i: INTEGER;

begin
for i : 1 to Length(s) do
if s(1) .0 space then
phon_info(s(i)) : p

end; aet_phon_ info)

1 Create_char_info_tables 1

Initialize all character information tables. These tables provide I

(descriptive information about each of the 255 characters in the Mac)

character set used for the model and response.)

(Global data structures affected:(
(base_char : vector specifying the base (unaccented) char corresponding)

to each char.)
(diacrit_info : vector specifying the type of diacritic mark which)

modifies each char)
I case_info : vector specifying the case (upper or lower) of each char.)
I phon_info : vector specifying whether each char is vowel or consonant.)

BEST COPY AVAILABLE

Page 9

procedure create_char_info_tables;

var
lineNo: INTEGER;

c: CHAR:
s: str401
str: Str255;
h: handle:

begin (create_char_info_tables
for i : 1 to 255 do
begin

: CHARM;
base_char(cl z CHAR(force_down_caso(i));
case_info(c) :- get_char_case(i);
diacritinfo(c) :- no accent;
phon_info(c) :- consonant

end; (00
I

Replace bane...char default value for accented chars. Chars with accents have
the unaccented version as base char. Unaccented chars have themselves as base
char (this is the default case). I

NOTE: These settings assume that the font is COURIER or some compatible font!! 1

They may not display properly here in a font other than courier. I

set_baso_char('a., .444A441A4A4 10):
set_base_charf.e., '4) A g A g 4 g.);
set_base_char(.i., Iitifif.):
set_bame_charPo., .8 0 6 0 6 0 6 0 8 0');
set_base_char('u., '0 0 a 0 0 0 0 0');
set_base_char(.y., '9 2');
set_base_char(.c., .c c');
set_baso_charI.n., 'A IP);
Enter proper diacritic information for accented chars. Unaccented chars have

'no_accent as their diacritic. Accented chars are assigned the proper accent
mark. These settings assume COURIER font, and may not display properly in I

another font. I

et_diacrit_infolacute, .444giI6 0 0 0');
set_diacrit_info(grave, .444giI6 000.);
set_diacrit_info(circumflex, 'A A4E i I AO 0 0');
set_diacrit_info(diarsis, .4Aiel! 6 0 U0 y2.);
set_diacrit_info(supero, .4 A.)/
et_diacrit_info(cedilla, 'c g.);
set_diacrit_infoItilde, .ftai400,);
set_diacrit_info(macron, "1; I IBM PC had some macron chars I

Enter case info for upper case accented letters. This supplements the default)

assignment of *uppercase" to A..Z. - COURIER font. I

sot_cap_info(up_case, .Att00AgY002AttOtA0A£2 0 0 AEaoRg.1;

Set phon info for vowels. This overrides the default setting of 'consonant".)

Specify both upper and lower case, separately for chars with diacrits. - COURIER font. 1

set_phon_info(vowel, 'a eiouyAEIOU24omm.);
set_phon_info(vowel, 'A 4i6 046I6UyA41 611484416 0');
set_phoninfo(vowel, 'Att60Ag/00YAEI00A0AttO0AECE 0');

(Set cap info for accented chars - COURIER font 1

end; (crelate_char_info tables)

-OverrideCharInfoTables I

Take line of char info specs and install them in the proper char info table.

procedure overridoCharInfoTables (specs: Str2551;

var
n: INTEGER;

switch: char;
d: diacrit_variants;
c: case_variants;
p, q: phon_variants:
a, ch: Str255;

begin
switch :- specs(11; (Specifies type of info.
delete(specs, 1, 2); (leading char and following comma)

i I" 13011(..., specs);
if 1. 0 then
FAIL(ConcatI.Viissing comma after switch in judging table lino: specs));

ch : Copy(specs, 1, i - 1); (Specifies base char or variant value for following list.)

if ch then
FAIL(.4Missing base char or variant specifier.');

delete(specs, 1, 1)/

case switch of
'b.: (base char)

set_base_char(ch, s);
.d.: I diacritic information)

begin
if eq(ch, 'acute.) then
d : acute

else if eq(ch, 'grave') then
d grave

else if eq(ch, 'circumflex') then
d circumflex

else if eq(ch, .diarsis.) than
d dlarsis

else if eq(ch, .superc.) than
d supero

else if eq(ch, 'cedilla') then
d cedilla

else if eq(ch, .tilide.) than
d tilde

else if eq(ch, 'macron.) than
d macron

else
FAIL(ConcatN4Bad diacritic variant value: ', ch11;

set_diacrit_info(d, s);
end;

.c.: (capitalization information)

begin
if eq(ch, .up _case.) then
c up case

else if eq(ch, 'down case') then
c down_case

else
FAIL(Concat('%Bad cap variant value: ., eh, specs));

sot_cap_info(c, s);
end;

.p.: (phon information 1

begin
if eq(ch, .vowel') then
p vowel

else if eq(ch, 'consonant') then
p consonant

else if eq(ch, .phon3.1 then
p phon3

else if eq(ch, ' phony') then
p phony

else if eq(ch, .phon5') then
p phon5

else
FAIL(Concat(' %Bad phon variant value: ', ch));

set_phon_info(p, s);
end;

otherwise
FAIL(concat(.4Bad judging table switch: switch));

end; (CASE switch OF I

end; (overrideCherInfoTables)

(---------------------_-_--_ Init_markup)

(Set values for program parameters and data structures. 1

(First look to see if values have been provided in these 5 global variables: 1

theMarkupPunctuation 1

theMArkupSymbols
theillarkupWeights

thel4arkUpCharInfo
theMarkUpPhonMatrix 1

(If so, process those values to set the data; otherwise use default values. 1

procedure snit markup;

SetDelimiters I

Specify characters which will serve as punctuation in model and response.
If there are data in the global variable 'theMarkupPunctuation., use them. I

Otherwise, set values below as default values. 1

Chr(13) is MAC/HyperCard RETURN char, which starts new line.)

procedure setOolimiters;

WIT
h: handle;
s: tr255;
1: INTEGER;

begin

h getOlobal(paramPtr, .theMarkupPunctuation);
zeroToPas(paramPtr, 11^, s);

disposaland)*(h);

if s then
delim_chers :- (' .)., .1., .7., .1

else
begin
delim_chars ();

for i :. 1 to Length(s) do
delim_chare delim_chars 4 (s)i));

end

REST COPY AVAILABLE

rJO

Chr (13))

Page 10

end; (setDelimiters)

(-----------------------------------SetSymbols)

(Specify characters which will serve as punctuation in model and response. 1

(If there are data in the global var 'theMarkupSymbols. use them. 1

1 Otherwise, set default values below. 1

procedure setSymbols;

var
h: handle;

/NTECER;
Ss, s: str255;

begin

h getClobal(parametr, 'theMarkupSymbols.);
zeroToPas(paramPtr, 11", s):

disposHandle(h):

if s " then
begin
addcap
dropcap '-';
accenterr '-';

extrawd : 'X's
missingwd 'A';

movewd : 'e':
extraltr 'x':

missingltr '\';

substituteltr :
transltrl '>';

transltrl '<';

runonwd : '1';
and

else
begin
addcap 2(1);

dropcap s(2);
accentarr :- 2131;
extrawd 11(61:

missingwd : s(5);
movewd : a(6);
extraltr 2(71;
missingltr 1001:

ubstituteltr 1(91;

transltrl 2(10);
transltr2 3(111;
runonwd 3(121;

end;

(uparrow)

(downarrov
(tilde 1

(capital X
(capital delta 1

(solid leftward arrowhead)

small x 1

(backslash 1

(equal sign 1

right angle bracket
left angle bracket
left square bracket

Page 11

s :- concat(addcap, dropcap, accenterr, extrawd, missingwd, movewd, extraltr, missingltr, substituteltr, transltrl, transltr2,

runonwd);
Ss :- concat(Seddcap, Sdropcap, Saccenterr, Sextrawd, Smissingwd, Smovewd, Soxtraltr, Smissingltr, Ssubstituteltr, Stransltrl,

Stransltr2, Srunonwd):
for i :- 1 to Length(Ss) do
symbolMap(Ss(i11 s(i):

nomark space;

symbolMap(Snomark1 :- nomark;

end; setSymbols

(------------------------Set_judging_tables)

procedure set_judging_tables:

var
h: handle;
p: ptr;
s: str255;

begin

First, initialize all judging tables with default values. I

create_char_info_tables;

I Override default value, with user - specified values in THEMARKOPCHARINFO.)

h :- getClobel(paramPtr, 'theMarkupCharInfo');
p h":

disposHandle(h):

while True do
begin
while p" - 13 do
p FTR(ORD(p)

if p" 0 then
LEAVE;

f 1);

1 If at CR, move to next char I

(If line is empty, skip over it.)
1 If at end of string, exit. I

56

I
roturnToPas(paramPtr, p, x); (If real line, get it)

overrideCharInfoTables(a);

scanToRsturn(pramPtr. p);
(and install its values.)

(Move to the next CR I

end;

end; I sot_judging_tables

II/

(----------------------------Set_phon_matrix)

(Specify characters which will serve as punctuation in model and response.)

If there are data in the global var 'theMarkupSymbols., use them. I

Otherwise, set default values below.)

111

procedure set_phon_matrix;

var
h: handle;
s: str255;

111

p, q: phon_variants;
i, w: INTEGER;

begin

h getGlobal(pareePtr, 'theMarkUpPhonhetrix.);
zeroToPas(paramPtr, h", a);
disposHandlo(h);

if s '' then
(Put default values into the substitution weigh matrix, pmatrix.

111

(For a given cell PHON_MATRIX(M, R), M is the phonetic category of a model I
(character MC and R is the phonetic category of a response character RC.)

I The integer value in the cell is the weight attached to substituting RC for MC.)

(The default values below equal to WCHANGE if MC and RC are in the same category; I

(if they are in different categories, the ccst of a sustitution is 1.2 times WCHANGE. I

111

begin
for p : vowel to phony do
for q vowel to phon5 do
if p q then
phon_eatrix(p, q) :- wchange
else
phon_matrix(p, q) :- TRUNC(1.2 wchange);

maxEditWeight :- TRUNC(1.2 wchange);
end
else

(If the HyperCard global THEMARRUPPHONMATRIX is not empty, read values from it.)

begin
maxEditWeight :- wchange;
i :- 1;

for p :- vowel to phon5 do
for q :- vowel to phon5 do
begin
is :- strToNum(paramPtr, nthChunk(s, 1, ','));
phon_matrix(p, q) w;

maxEditWeight : max(maxEditWeight, w);
inc(1);

end
end;

end;en d; (set_phon_matrix I

- -SetWeights)

(Specify weights and thresholds which control spelling analysis.)

(Values must be contained in the global var THEMARPUMWEIGHTS, and)

must appear as comma-separated items, in this order: I

(winsert, wdelote, wchange, wtranspose, cutoff, prop errors, runon_criterion I

(If any of these items is EMPTY, a default value will be used. If THEMARKUPWEIGHTS)

111

f does not exist or is empty, all default values will be used .)

procedure sotWeights;

var
h: handle;
v, str255;

begin

These are the default weights assigned to the various edit operations, chosen so)

(that the cost of change is less that that of a deletion followed by an insertion. 1

(Also, the cost of a change, or of a deletion/insertion sequence is greater than)

{ that of transposition. The 'standard' distances of 2,2,3,2 have been multiplied)

(by 10 so that accent and cap errors can be scored at lower value.)

winsert :- 20;

111

wdelete : 20;
wchange :- 30;
wtranspose :- 20;
waccent :- 1;
weep :- 1;

111

(Ratio of word lengths must be nearer than this to 1 or the edit distance between)

(them will be automatically set to infinity (used only when 'shortcut' is TRUE).)

5 ;)

cutoff 0.67;

Page 13

(This parameter control, the proportion of spelling edits which can occur when

(attempting to match two words before the two words will be considered non-matches. 1

prop_errors 0.35;

This is the sax normalised edit distance which can exist between 2 modal words is i ram
and a response word r before r can be considered to be s and ms run together.)

runon_criterion : 0.2;

Override the defaults with values in global variable MEMARKUPWEIGHTS. I

h getGlobal(paramPtr, 'thoMarkupWeights.);
xeroToPas(paramPtr, h., s):
disposHendlt(h):

if s <> then
begin

nthChunk(s.. 1, ...);
if v <> " then
winsert : strToNum(paramFtr, v):

nthChunk(s, 2, ','):
if v <> '' then
wdelete : strToNUm(paramPtr, v):

nthChunk(s, 3, ','):

if v <> " then
wchangt :- strFoNum(paramPtr, v):

nthChunk(s, 4. ','):

if v <> " then
wtranspose : strToNum(paramPtr, v);

v : nthChunk(s, 5, .,')1

if v <> " than
wcap :- strToNus(peramPtr, v);

: nthChunk(s, 6, ','):

if v <> " then
waccent : strToNum(paramPtr, v):

: nthChunk(s, 7, ','I;

if v <> " then
cutoff :- strToExt(paramPtr, vl:

v nthChunk(s, S, ',");

if v <> " then
prop_errors : strToExt(paramPtr, v):

nthChunk(s, 9, ','):

if v <> " then
runon_criterion strToExt(paramEtr, v):

end;

end: 1 setWeights)

(------------------------ -------- -----

begin (init_sarkup)

Specify cap, accent, vowel, and base-char properties of chars.
First sot defaults, then look for values in global vars.)

set_judging_tables:

Specify which input chars will serves as 'punctuation' (word delimiters).)

setnelimiters:

Specify which symbols to use for markup display.)

setSymbols;

Set numerical weights and thresholds which control judging process.)

setWeights:

Set values in PHON_MATRIX, which determines substitution cost for varioius
combinations of character categories. Also computes maxEditWeight.)

set_phon_matrix:

end: I Snit markup)

INPUT PARSING

Segment string)

Page 14
Process the modal (correct answer).string and the (student's) response strings)

(and puts them into an internal format suitable for further processing. 1

String is segmented into words and the total number of words, as well as the)

I length of each word, is recorded. While breaking out individual words, all)

(extraneous characters -- extra spaces and punctuation -- are discarded.

I If string is model, the special syntax of ingorable words and synonyms is)

(interpreted, and a list (in set format) of ignorable word portions is built,)

(as well as information on which words are synonyms and which sequential)

position each words occupies in the sentence. All the synonyms in a group 1

(share the !lie sequential position.)

Special syntax for correct answer: ignorable words are placed within angle 1

(brackets, and synonymous words within square brackets, eg:)

(the quick < brown > fox (jumped leaped I over the < lazy > dog)

(Input vars:)

(c
I ismodel

: string to be processed (correct answer or response) }

: True if string is correct answer; false if it is student response. 1

I Return vars: 1

f wk : number of words)

I w

: If string is model, 1

(

: vector of words (strings))

(wig : parallel vector of word lengths (char counts) 1

I wane
position number of each word (all the synonyms in a list share the)

(same postion number), or, 1

(if string is response, i

I column location of leftmost letter of each word (entire response)

(is assumed to be on a single screen lino.) i

(signore : list (in set format) of word sequence numbers to ignore)

procedure segment_string (var wk: INTEGER; var c: string; var w: inputwsvector; var wig, waux: inputwivector; ismodel: BOOLEAN);

1
var
i, p, position, lg: INTEGER;
x: wordstr;
syn_list, ignore flag: BOOLEAN;

I
begin

c : concat(c, ");
lg :e Longth(c);
wk :- 0;

II

position :- 1;
syn_list :.. False; I Turn on when processing synonym list.)

ignore_flag :- False; (Turn on when processing ignorable word list.)

if ismodel then
signore :- ();

(Take successive chars from string to build next word. If word has become too 1

(long, set error flag and exit.)

i :e 1;
while i <.. lg do
begin
x :e '';

i
p i;

while (1 <- 1g) and not (c(i) in delis chars) do
:e

begin
x :- concat(x, c(i));
Inc(i)

i
end;

(If word not null, then update word count, word vector, word length vector.)

if x <> " then
begin

(If sentence would have more than the allowable number of words, or if the)

(current word is too long, set error flag and exit.)

111

if (wk + 1) > word max
FAIL('%Too many words in input.');
if Length(x) > lmax then

_ then

FAIL(concat('%Input word too long: , x1);
Inc(wk);

i (If string is model, also update synonym list, ignorable word list, and map 1

w1g(wk)
x;

:e Length(x);
w[wk) :

(of model word numbers to model positions. 1

if ismodel then
begin

III

if ignore_flag than
signore :- signore + (position);
waux[wk) :e position;
end
else

111

waux(wIt1 :e 13;
if not syn_list then
Inc(position):

end;
(Process delimiters trailing at end of word, including ignorable and synonym list 1

II/

I delimiters. If one of the latter is encountered, set or clear the appropriate 1

I flags. 1

while (1 .0. Ig) and (c(i) in delis chars) do

I--- r

BEST COPY AVAILABLE

begin
if ismodel then
case c(i(of

syn_list True;

begin
syn_list False;
Inc(position);
end;

ignore_flag : True;

ignore_flag : False;
end; (CASE)

Incti1;
end; (WHILE (lg 1 AND (of i j IN delift_chars) 1

end; (WHILE i lg))

Clean-up code for end-of-string condition. If number of response words less
or number of positions in model, exceeds the dimension of the (square) sim
matrix, the set error flag and exit. Otherwise store the number of positions
the model, if string is model, or the column number of the first character
beyond the end of the response (used later for markup). 1

case isaodel of
True:
if position > wives then
FAIL('111Too many word positions in model.')

else
pig position - 1;

False:
if (wk + 1) > wmax then
FAIL('Woo many words in input.')

else
waux[wk + 11 Length(c) + 1;

end; (CASE)

end; (segment_string)

procedure segmentModel;

war
i: INTEGER;

begin
for i :- 1 to word max do
mw[i1
segment_string(mwk, model, mw, mwlg, mwseq, True);

end; (segmentModel)

Page 15

---------------SegmentNodel

(------ ----------------_------------ ------ -------------- ----- segm.,,tRespon.e

procedure segmentResponso:

war
i: INTEGER;

begin
for i 1 to word max do
rw[ij u";

segment_string(rIg, response, rw, rwlg, rwx10c, False);
end; (segmentRosponse

procedure setModel (s: string);

begin
model :- s;
segmentModel;

end; (setModel I

SetModel I

------ ---------------------)

procedure setResponse (s: string);

begin
response : a;
segmentResponse;

end; (setResponse 1

(_----___-- -)

I SPELLING ANALYSIS 1

Init_spelling 1

00

Page 16

(Initialize all matrix de...a structures used by the dynamic programming algorithm 1

f which generates a 'nearest match misspelling markup. These data structures I

(are all global. The (global) vars affected are: 1

(sditd : matrix of (minimal) edit distances)

(marks : parallel matrix of (minimal) markup corresponding to each edit distance. 1

procedure init_spelling (var marks: lsmatrix);

,fltr

i: INTEGER;

begin
editd(0, 01 :- 0:

marks(0, 01 : ..;

for i := -1 to lmax do
begin
marks(i, -11 := '';
marks(-1, 11 :=

editd(i, -1) :- infinity;
editd(-1, 1) := infinity;
and;

for i :- 1 to lmax do
begin
editd(i, 0) := editd(i - 1, 01 4 wdelete:
editd(0, 11 :- editd(0, i - 11 r winsert;
marks(i, 01 := concat(marks(i - 1, 01, extraltr);
marks(0, 11 :- missingltr;
end;

end: (init_spelling 1

CapMark I

Return System markup char for capitalization and/or accent error. Character M,
assumed to be from the model, is compaired to character R, assumed to I

be in the student's response. If R has both a cap error and an accent
error, the cap error takes precedence.)

function capMark (m, r: CHAR): CRAP;

var
mcase, rcase: case_variants:
mark: CHAR;

begin
mom := case_info(m);
rcase :- cas_info(r);
mark :- Snomark; I Default is no m-rk 1
if (cap_flag <> ignore_case) and (mcase <> roast) then
case cap_flag of
exact_case:
if rcase - down_case then
mark :- Saddcap
else
mark :- Sdropcap;

authors_caps:
if mcase - up_case then
mark :- Saddcap;

end: (CASE)

(If case is ignored or ok, or user's case mark is blank, then check to see if accents match.
if (mark Snomark) i (diacric_info[m1 <> diacrit_info(r)) then
mark :- Seccenterr;

capMark :- mark:

end; (capMark 1

------ --AccentError 1

Compair the two chars M and R. Assign score WCAP for a cap error, WACCENT for I

an accent error, and return the total score. C returns the type of error(s): Snomark for none,)

'u' and .d. for case error only; '-' for accent error only; .U. and .0. for both case and accent error. I

The detailed info is useful only for return to user when raw markup string is requested;)

CAPMARK regenerates it during word markup. 1

function accentError (n, r: CHAR: var c: CHAR): INTEGER;

VAX'

errk: INTEGER;

begin

(See if cases match. I

if (case_informl - case_info(r11 I (cap_flag - ignore_case) I ((cap_flag - authors_caps) c (case_info(r(up_case)) then
begin
errK := 0:
c := Snomark (No case err)

end
else
begin

BEST COPY AVAILABLE

Page 17

era weep;
if case_info(m) up_case than
c .u. (Case error)
else
c .d.; Case error)

end;

Also check to see if accents match.)

if diacrit_info(m) diacrit_info(r) than
accentError errK

else
begin
accentError ferric + waccent;

if c Snomark then
c Saccontorr (Accent err only)

else if c .u. then
C .C.

else
c .D. 1 Case and accent err I

and;

end; 1 accentError

(Converts the °raw spelling markup returned by the least-distance algorithm to)

1 markup suitable for display: (a) When two letters match, checks cane /accent)

(and generates the case/accent markup, if any; (b) reduces a sequence of omission marks,

(\", to a single omission mark; (c) supr sssss any markup of letter following an)

(mission, since the omission marker 'V° occupies the space beneath the next)

(character following the omission; (d) substitutes a blank apace for as an)

(indicator of properly matched letters. }

function spellKarks (var marks: wordstr; var m, r: wordstr): wordstr;

const
preemptives (Smissingltr, Srunonwdl;

var
i, 5, k: INTEGER;
mc, usermark: CHAR;
preempted: BOOLEAN;
markup: wordstr;

begin

:- 0;

5 0;

preempted False;
markup ..;

for k 1 to length(marks) do
begin

Inc(i);

Inc(J);
mc marks(k);

if mc in letterError than (case or accent or no error)

mc capeark(m(i), r(j)) (system error char)

else if (mc Sextraltr) then
Dec(i)
else if (mc in preemptive.) than
Dec(5);

If the user symbol for missing wd or runtogother is space, do not preempt spelling mark.)

usermark : symbolMap(mc);
if not preempted than
if (mc in preemptives) then
if (usermark nomark) then
preempted :- False
else

begin
preempted True;

markup concat(markup, usermark);
and

else
begin
preempted False;
markup concat(markup, usermark);
end

else
(If preemption is on, skip current markup char, but turn off preemption to accept successive ones.)

preempted :- False;

end; (FOR)

spellmarks markup

end: 1 spellMarks I

......... w.ditdigt

Computes normalized minimal spelling edit distance between two strings R and M and)

(optionally) the markup string which corresponds to that edit distance.
Input ears:
r : Single word from response string)

: Single word from model (correct answer))

markflag :TRUE if markup corresponding to edit distance is to be returned;
FALSE if no markup string needed. I

shortcut :TRUE if words of too different length will be given distance infinity; I

FALSE if exact distance must be computed.)

Return vars: I

markup : Markup string (if requested). I

nedit_dist : Normalized edit distance I betweeen 1 and 0 I.)

edit_dist : (GLOBAL var) : weighted, unnormalized edit distance.)

function nedit_dist (var r, m, markup: wordstr; marks: Ismatrix; markflag, shortcut: BOOLEAN): REAL;

var
j, flag, x, x2, x3, x4, d, ml, rl, db, 11, jl: INTEGER;

ratio: REAL;
c, haste, mc, rc, mk: CHAR;
t: wordstr;

begin

runtogetherflag :- False;

1 If doing standard order analysis, handle some special cares.)

(If raw trace was requested , go directly to produce minimal trace.

if rawTrace x. then
begin
If the two words match exactly, return edit distance of O.
if m r then
begin
neditdist : 0;

edit_dist 0;

markup 4.;

EXIT(nedit_dist);
end;

ml : Length(m);
rl Length(r);
If word lengths vary too much, and shortcut flag is set, skip further
analysis and return infinite edit distance.)

if shortcut then
begin
if ml < rl then
ratio ml / rl
else
ratio rl / ml;
if ratio < cutoff then
begin
nedit_dist :- infinity;
edit_dist infinity;
markup
EXIT(nedit_dist)
end:

end; (IF shortcut)

end
else I rawTrace .r. or .p..
begin
markup :

ml :- Length(m);
rl Length(r);

end:

Otherwise, compute the edit distance between the two words using dynamic)

programming algorithm expressing recursive relation between left substring I

distances. This is a form of exhaustive search, implemented here by iteration
rather than true recursion .

1 Initialize temporary memory array. I

1 drIch1 will store location in rasp where char ch last appeared.
for i 1 to 255 do
dr(chr(i)1 :- 0;

(Main loops to fill matrix of substring edit distances.
for i 1 to rl do
begin
db 0;

for j 1 to ml do
begin

mc m(11:
re r(iI;
it dr(base_char(mc(); (last occurence of mc in rasp)
J1 db; (last matched char in model)

1 Check for identity or substitution of end chars in each string.

(3 ,)

Page 18

BEST COPY AVAILABLE

Page 19

if mc rc then
begin
d : 0; (dist between chars mc and rc)

db : j;
ak : Snomark;
end
else if base_char(mc1
begin
d :- accentError(mc, rc, ak); I return d and

db : 1;
end
else
begin
d phon matrix[phon_info(ac1, phon_info[rc11;
mk Ssubstituteltr;
and;

(model position of last matched char)

base_char(re) then

mk, is in _-udEld I

(
subst dist for type mc and type rc)

Find cost of matching via omission, insertion, substitution, and transposition.)

x - 1, j - 1] d;

x2 :- editd(1 - 1, j) + winsert;
x3 : editd(1, j - 1) + wdelete;
x4 : editd(11 - 1, 11 - 1) + (1 - 11 - 1) wdelete + wtranspose + (j - 11 - 1) ',insert:

(Select the match which yields least cost. Start by asmeing omission (x1).)

flag : 1;

if x2 < u then
begin
x x2;
flag : 2
end;
if x3 < x then
begin
x x3;

flao v... 3

end;
if x4 < x then
begin
x :* x4;
flag 4

end;
editd(i, 11 :- a;

If markup return is requested, generate markup sting for this char pair. 1

When marking an omission, use special mark for omission of space, which indicates 1

run together words.)

if (flag 3) and (11(1) - space) then
runtogetherflag :- True;

if aarkflag then
case flag of
1:

marks(i, 11 7.

2:

marks(i, j)
3:

if m(j) space then
markafi, 11 : coneat(marks(1,
else
marks(i, j) :- concat(marks[i,
4:

marks(1, j1 concat(marks(11 - 1, 11

end; (CASE flag OF)

concat(marks(i -

concat(marks(i -

1, j -

1, j), Sextraltr);

11. mk);

- 11,

j - 11.

end; FOR j DO)

dr(base_charIrti111 :- 1:

end; I FOR 1 DOI

Srunonwd)

Smissingltr);

- 11, Stransltrl, dUp_char('', 1 - 11 - 1), Stranaltr2);

Minimum weighted, unnormalized edit distance is now in lower right entry of editd matrix. 1

(This number includes weights due to accent and case errors. Save it in global var edit dist. I

edit_dist :- editd(rl, 11;

(
Get 4 return normalized edit distance, nedit_dist, by dividing maximum total cost of converting 1

(a string of length rl to one of length ml.)

nedit_dist edit_dist / (eaxcditWeight min(ml, rl) + wdelete Osax(ml, rl) - min(ml, r11)1;

Return markup string. Will be null if none was generated in loop above. 1

if rawTrace - 'r' then
markup : aarks(rl, ml)
else
markup spollmarks(marka)rl, ml), m, r);

end; (neditdist)

(Return raw edit markup.)

I
Return 'pretty` markup suitable for display. 1

Edit trace)

I
Top-level control to generate a least-cost edit trace on the strings MODEL and RESPONSE. I

Form of trace (raw or pretty) is controlled by global var RAWTRACE values 'r' or 'p'. I

Page 20

I Edit trace string is put into direct HyperCard XFCN return. Indirect return is put into)

(the HyperCard global var :HEMARKUPRETURNVALUES: two comma separated items,)

1 the first the raw 0.-"t distance, and the second the normalized edit distance.

procedure edit_trace (model, response: str255):

var
ned: REAL;
c: CHAR;
sl, s2: str255;
ms, rs, marks: wordstr:

begin
if (length(model) > Imes) I (length(response) > lass) then
FAIL(.16Input string length exceeds max word length.')

else
begin
c

ms copy(modol, 1, 25);
rs copy(response, 1, 25);
init_spelling(marksP");

Return markup string in MARKS and weighted unnormalized edit dist in EDIT_DIST.
ned nedit_dist(r., ms, marks, marksP", True, False);

I Convert so markup string is direct return; NEDIT_DIST and EDITDIST are returned in
(THEMARKUPRETURNVALUES.)

extToStr(paramPtr, ned, sl);
numToStr(paramPtr, edit_dist, a2);
sl concat(sl, c, s2);
paramPtr".ReturnValue pasTo2tro(paramPtr, marks);
setClobal(paramPtr, .theMarkUpReturnPalues., pasTo2ero(paramPtr, sl));

end;
end; (edit_trace I

(____-___----------

NORD ORDER ANALYSIS

(____-_-_ ------

Filleditdmatrix I

Get least edit distance between each pair of words (H, R) where H is taken from f

the correct answer and R comes from the student's response. The procedure)

takes synonyms into account, so that the synonym M with minimal edit distance
from a given R is used to determine edit distance. I

The normalized edit distance for each pair is computed. If this distance is
greater than a certain criterion, prop_errors, then the two words are considered
to be different and an 'infinite" distonce assigned. If prop_errors is less
than the criterion, then the actual distance is assigned, scaler -1 make it an 1

integer between 1 and sclitWeightScale.)

procedure fill_editd_matrix (var mw, rw: inputwsvector; var mwseq: inputwivector; var sirs: wlmatrix: var simseq: wimatrix);

var
m, mp, r, p: INTEGER:
d: LONGINT;
ned: REAL;
spollmarks: wordstr;

begin

I Create a list (set) of response words which exactly match ignorable model words.
rignore ();

for m 1 to mwk do
if m in signore then
for r 1 to rig do
begin
sim(r, mwseq[mIl :- infinity;
if my(*) rw(r) then
rignore rignore t (r)

end;

I Look at each response word in turn.
for r 1 to rig do

If the response word is ignorable word, it cannot match any model position.)

if r in rignore then
for mp 1 to mwk do (Exclude all model positions.)

sim(r, mp) :- infinity
else
for m :- 1 to mwk do
begin

Using m as an index for POSITION, initialize distance between each response
word and model position to the default of 'infinity'. Since mlq will always I

exceed the number of positions, this will initialize all positions, and some I

cells beyond that.

BEST COPY AVAILABLE
6 a

sim(r, m) infinity;
simsecar, : -1;

(Cwt the edit distance between the currant response and model words. The

I spellmark are not actually returned here, but parameter is required at

(position. 1

ned :- nedit_dist(rw(r(, mw(m), spellmarks, marksP", False, shortcut)/

that I

If the normalized edit distance exceeds criterion value, than round)

it to infinity/ otherwise, convert it to an integer between 1 and editNeightScals. Shortcut I

may be used -- words differing too such in length assigned infinite distance.)

if ned prop_errors then
d :- Trunc(editWeightScalo ned)

else
d infinity;

(Get the position in the model which the current model word corresponds to.
((several synonyms may share the same position, but note that p will always be

(less than m, hence a cell referenced by p will already have been initialized.
p mwseg(a);

(If response word is like ignorable model except for cap and accent errors, then I

(ignore it and make it unmatchable with every model position. MP is model position index.

if (m in signore) then
if (edit_dist < winsert) than
begin
rignore rignore (r):

for mp :- 1 to mwk do
sim(r, mp) infinity;
end
else

I If R isn't close to ignorable M, leave distance infinite.)

(Otherwise, if the current distance is smaller than what is already entered in this cell,)

(then replace the call contents with the new distance, and keep track of the model I

(word numb -" used to fill this model position. This means that when there are several

(synonves occupying a single position in the pattern, that the model word ultimately

(used will always be the one which is closest to the response word, and the distance)

(
entered in the cell will always be the minimum possible for the given synonym 1

I list. This is essential for proper handling of synonyms. The actual model word)

matched must be remembered so that an appropriate spelling markup can be)

I ;Anerated later. I

else if d < sim(r, p1 then
begin
sim(r, p(d;

simseg(r, p) m;

end;

end; (FOR is :- 1 TO mwk; ELSE/ FOR r : 1 TO rig)

(The matrix has the dimensions rig X pig. Initializations of other cells are bogus.)

if trace then
soit_nedit_matrix('End of FILL_EDITD_MATRIX');

end; fill_editd_matrix I

I
Generate a list of possible matches, in set format, for each response word)

(position.)

procedure liat_possible_matches;

var
r, m: INTEGER;

begin
matched : (1;
;snatched : (1;
maybe : ();

maybe : (1;

for r 1 to rlg do
begin
choices(r) (I;

runtogether(r) : -1;
for m : 1 to pig do
if a(r, a) < infinity then
begin
choices(r) : choices(r) + (m);

maybe maybe + (r);
mmaybe maybe + (m);

if a(r, 0 then
begin
matched 'matched + (m);

matched matched (r);

end;

end:

end;

if trace then
begin
showset('matched., matched):
showset('Imatched., 'matched);

66

I

showseWrignore'. rignor);
showset(.mignor40, *ignore);
for r 1 to rig do
showset(concat('choices NtoS(r)), choices(r));

and;

end; (list possible matches)

Page 22

(.-------------------.--Find_runtogether

This procedure called after the initial pass at spell matching has been done.)

For each unmatched word in r, all adjacent UNMATCHED pairs of positions, m, ma,)

in the model are examined in turn to see if r matches the concatenation of m)

with mm (possibly allowing for some misspelling). This means that run-together)

words are identified as such only if they appear in the exact order specified)

by the model. When forming the pairs a, ma, the following complications)

must be taken into account:)

(1. Ignorable words in the model must be left out of consideration when)

determining adjacency, so that m and mm will be considered adjacent if)

(separated by nothing but ignorable words. E.g., in a < b c > d, a and d are)

(adjacent. I

(2. Synonym lists must receive special treatment. Suppose two adjacent I

synonym lists (a b) (d f), with each of them unmatched (i.e., no
has matched any synonym at either position). Then r must be compared to ovary

(member of the cartesian product of the two lists: ad, at, af, bd, be, bf.
(Likewise, for a (b c d), r must be compaired to ab, sc, and ad.)

procedure find_runtogether;

tar

r. m, mm, xm, xmm, p, pp: INTEGER;
unmatchedm, unmatchedr: wordset;

label

1;

(---------------- -------------Next_position)

Seach through list of model words and return index of first word right of 'start' I

which (a) is not en ignorable word, and (b) is not a synonym of the word at
'start'. If the word found is part of a synonym list, it will always be the first
member of that list. If no word of this sort can be found beyond 'start', return 0.

function next_position (startingsw: INTEGER): INTEGER;

var
lastp: INTEGER;

begin
next_position :. -1;
if startingmw -I then
EXIT(next_position);
lastp mwsecastartingmw);
for i Succ(startingmw) to mwk do
if (mwsw(ll <> lastp) and (mwsec(il in unmatchedm) then
begin
next_position : i;
EXIT(next_position);

end;

end; (next_position)

Try_to_split_rw I

Compare response word r to the run-together string consisting of model words)

m and mm. If spelling analysis yields an edit distance of less than split_criterion, I

then (a) match r with the word at mm; (b) mark the run cn' portion of r which
corresponds to the word at mm as ignorable, so that it will not be marked up)

as a missing word; (c) remove both p and pp from the list of unmatched positions)

so that they will not be matched to some other r; (d) add p to the list of choices I

available to assigning to r during the order analysis. No markup and no short- I

cut used when computing edit distance.

function try_to_split_rw: BOOLEAN;

var
d: REAL;
dummy, runtogetherword: wordstr;

begin
try_to_split_rw :. False;
runtogetherword concst(mw(xml, space, mw(xmm));
d :- nedit_dist(rw(r), runtogetherword, dummy, marksP*, False, False);
if runtogetherflag and ((edit_dist s wdelete) or (d runon_criterion))
begin
try_to_split_rw True;

a(r, p) Trunc(editWeightScale d);

aseq(r, pj xm;

runtogether(r) xmm;

choices(r) : choices(r) 4 (pi;
signora signora (pp);

then

6 BEST COPY AVAILABLE

unmatched* unmatched* - [p, pp1;
unmatchedr : unmatchedr - (r);

end;

end; I try_to_split_rw

begin 1 find_runtogether 1

Gat set of unmatched positions (not matched and not ignorable). Also set of
unmatched r words.

unmatched* [1..p1g1 - mmaybe - mignore;
unmatchedr [1..r1g) - rmaybe - rignore;

if trace then
begin
showset(.unmatchedie unisatchedm);

showset(.unmatchedr unmatchedr);
end;

for r : 1 to rig do
begin
runtogetherM 0;

if r in unmatchedr then
begin

I Get pairs of adjacent model positions, p, pp. In determining adjacency, 1

ignorable words are neglected, and synonym list counts as one position.)

If the next position is a single word, then 'next_position. returns the index I

(number of that word; if it is a synonym net, then it returns the index number I

(of the first word in that list. When there are no further such pairs, either
m or mm will be returned as 0. 1

: next_position(0):
mm next_position(m):
if ma -1 then
EXIT(findruntogether):
while me <> -1 do
begin

f Get the position numbers of the words.)

p mwseg[m);
pp mwseq[mml;

(Verify that both positions are still unmatched. If not, they cannot be

f matched against tilt' possibly run-together r, and we must move on to the next 1

(pair of a, me. I

if EP. pp(unmas-chedm then
(This double loop takes care of cases where either m or mm, or both, head)

(synonym list. In this case, r must be test d against all combinations of words
(w, w, where w is drawn from the synonym list headed by m, and ww is drawn from I

f from the list headed by mm. In the common case where neither a nor am heads a I

(synonym list, each loop executes once only. The loops operate by starting at 1

(m (me) and advancing rightword one word at a time to the end of the synonym list, I

f signaled when the position number associated with the current word changes.)

begin
xm :- m;
while p - mwseg[xmf do
begin
sea :- ma:
while pp mwseq(xmm) do
begin

I Mere me(r 1 is tested for a match with the run-together string mw(xm 1 + mw(xmm I

I If the match succeeds, then exits the m, mm loops and start work on the next r. 1

if try_to_split_rw than
goto 1;

Inc(xmm):
end;

Inc(xm);
end;

end: (IF [p, pp) unmatched*
I Mbve right to next pair of adjacent model positions. 1

:- next_position(m);
en :- next_position(m):
end: I WHILE (m > 0) AND (am > 0) 1

end; I IF r IN unmatchedr)

end: (FOR r 1 TO rig DO)
f Update list of matched response words and model positions.)

snatched (1..plgl - signore - unmatched*:
matched (1..r1g) - rignore - unmatchedr:

end; (find_runtogether I

(------------------------ Search_sequences I

Core procedure of the order analysis: actually produces an optimal matching of)

model and response words. Optimal means that the match Leturned is at least as
good as any other match which could be generated. If A and B are two matching', I

A is defined to be better than B if (i) A has less inversions than B, or, if 1

A and B have the sem, number of inversions, (ii) the final inversion is as I

far to the right as possible. Consider this example, where a, b, c ... symbolize I

full words:)

(Model word: a b c a b c

Page 23

Position number: 1 2 3 4 5 6

I Response word: b c b c a
(Position number: 1 2 3 4 5 6

(For each response word, several model words, at different positions in the)
'model, may match:)

1 2 3 4 5 6

......

2 3 4 2 3 4

5 6 1 5 6 1

(Response position:
(---__-------_-_____------_--_-__-------

(Hatching models words:

1 A matching is generated by choosing one of the numbers (i.e., model words) I

(in each column, subject to the restriction that no number be chosen twice.)

(Possible 'etchings are indicated in the table below. Of course, a model and I

) response word can only be matched if they are sufficiently similar (ideally, I

(identical).)

(

(

Response word position: 1 2 3 4 5 6

One possible matching: 2 3 4 5 6 1

A second matching: 5 6 1 2 3 4

A third matching: 2 6 1 5 3 4

An inversion occurs whenever two successive numbers invert their natural order; e.g.,)
the first matching has one inversion, at 6 - 1. The third has two: at)
6 - 1 end at 5 - 3.)

The algorithm generates all possible metchings in a depth-first manner, I

moving forward in the sequence of response-word positions by recursive)
descent, counting the number of inversions along the path as it goes, and I
keeping track of the position of the rightmost inversion. When a matching is I

complete, the algorithm checks to se, if it is at least as good as the matches I

generated so far and, if so, saves it in a list of solutions.

In the worst. case, where there were N response words and N model words, all)

identical, there would be N candidate words to fill each response position,)

and hence NI paths to check, leading to a near-exponential algorithm. In fact,)

the algorithm turns out to be fairly efficient, for several reasons: I

1. In actuality, even for fairly pathological cases such as cyclic and near-
I

cyclic patterns, there are relatively few choices for matching at each response)

position.)

(2. The algorithm does extensive tree pruning. As soon as it becomes clear that)

I a path cannot be optimal (because the number of inversions has exceeded the)

(minimum so far found), work is immediately terminated on that path and all)

(subpaths. This drastically reduces the search space. In practice, it appears I

f that search time is roughly quadratic.)

Input parameters: I

I remaining choices I

A list (in set format) of all the model words which have)

not yet been matched, and thus are still available for
I

matching.

(solution A record containing a description of this matching as so)
far developed, including sequence of model word numbers,)

inversion count, and position of rightmost inversion. /

I lastchosen Position of last model word chosen. When no model word)

matches a response, an arbitrary value of '0' is assigned)
to the solution sequence, but 'lastchosen' retains its I

prior value in this case, so that the inversion count will)
not be made against 'extra' words.)

p Response word position at which matching should take place.)

((Global) data structures affected:)
(solutionlist A list of optimal solutions, each solution is a record)

containing the actual matching (the sequence into which)
the model words must be rearranged to match the response),)
the number of inversions, and the position of the rightmost inversion.)

(solutionk Number of records on the solution list (starts with 41).)

procedure search sequences (remaining choices: wordset; solution: solutionrec; lastchosen: BYTE; p: INTEGER);

var

chosen: wrange;
solutionrec:

available_choices: wordset;
i: INTEGER;

I ---- - - - - --Choost_next)

(Chooses the first (leftmost) of a list of word, whose positions are represented 1

(in set format.)

function choose next (wsot: wordset): wrange;

var

i: INTEGER;

BEST COPY AVAILABLE

Page 24

Page 25

begin
i :- 0;

repeat
Inc(i)

until (i in wset);
choose_newt

end; (choose text)

(------------- - -Save solution)

(Pushes solution onto the solution list (a tack).)

procedure save_solution (sol: solutionrec);

begin
if solutionk < yams then
Inctsolutionk);
solutionlist(solutionk) sol

end;

(------------------- Trace solution)

procedure tracesolution;

var
i: INTEGER;

begin
(Write(" : 2 p) ti

(for i 1 to Length(solution.seco do)
(Write(Ord(solution.seq(i)) : 2):3
(Write(' inv1W, solution.inversionk : 2, ' firstinv -', solution.firstinv 2, ' p : 2);)

(Writelnt)
end; (tracesolution

begin (search_sequences

if trace then
begin
tracesolution;
pause;

end;

This is the termination clause. If we have run out of response words to)

match, this path is complete. Check the cost (number of inversions in this)

matching, and if it is more efficient than those currently on the stack,)

then clear the stack and start it over with this solution; otherwise,)

simply add the solution to those already present and exit, returning to earlier)

recursions.)

Inc(recursionk);
if (p > rig) then
begin
if (solution.inversionk < mincost) or ((solution.inversionk mincost) and (solution.firstinv > rightmost)) then

begin
raincoat :- solution.inversionk;
rightmost ;- solution.firstinv:
solutionk 0;

save_solution(solution);
end;

EXIT(search_sequen.les1;
end;

Othe,wise, we are still generating a path by recursion. Make a working copy)

of the solution, so that the partial solution state will be preserved upon)

return. Find out what matching choices are available for this response word)

by restricting the choices at this position to those not used at previous)

positions. If no choices are available, match this respose wcrd to the dummy
model word It 0 (this means treating the response word at this position as an)

extra word), and recurs, to match the next position rightward. 1

xsol solution;
available_choices (remaining_choices choicostp1);

if available_choices then
begin
xsol.seq :- concat(solution.seq, Chr(0));
search sequences(, staining choices, xsol, lastchosen, p + 1);

end
else
If one or more words are available for match, choose each of them in turn)

(this is done iteratively using the WHILE loop). Use this choice to extend the

matching, updating the word sequence, the number of inversions, and the position
of the rightmost inversion. Notice that 'available_choices., which records the
choices not yet tried at this loop will shrink each time though the loop, while
'remaining_choices', which records words not yet entered into the match, will)

stay unchanged. 1

while available_choices <> O do
begin
xsol :- solution;
chosen choose_next(avallable_choices);

available_choices available choices - (chosen);
enol.soq : conelt(so,ution.seg, Chr(chosen));
if chosen < lastchosen then
begin
Inc(ssol.inversionk);
if xsol.firstinv 0 then
xsol.firstinv p;

end;
(If the matching as so for developed is as good or better than any solution)
(so far found, than continue this matching by recursive descent to the next)
(response word position. Otherwise, abandon this matching, and do not try to)
(extend any matches from this point in the search tree (tree pruning). Simply)
(continuo the loop, choosing another matching possibility at this position,)
(if any remain. Note that before it is passed to the next level, the set of)
('remaining_choices. must have the current choice removed.)
(N.B. - Still greater pruning efficiency could be obtained by retaining a)
(solution only as long as it remained strictly better than the currant solutions)
(I inversionk < mincost). This is not done here so that the secondary criterion)
(of rightmost final inversions position can be applied.)

if (xsol.inversionk < raincoat) or ((xsol.inversionk mincost) and (xsol.firstinv > rightmost)) then
search_sequencts(remaining_choices - (chosen), xsol, chosen, p 1);

end; (WHILE)

(If all the possibilities at this position have been used, return to the}
(previous level of recursion and work on further possibilities there, generating)
(new branches in the search tree. I

end; (search_sequences)

(------------------------ ------ - ------------- ------ ---------Adjustsolution

I The strictly left-to-right recursion of the matching algorithm unfortunately)

(leads to situations like this one:)

(Model : the time
(Response: time then the)

(Markup generated: " < x XXX I

I More intuitive markup: " XXXX < 1

This comes about because the matching algorithm does not consider variations in)

edit distance when matching words -- it only knows that a pair is or is not a
permissible match. Hence a misspelled word is just as good a candidate as)

perfect match. When several response words match a given model word, the I

leftmost is always selected in preference to the 'redundant' rightward versions,
e ven if the rightward versions are better spelled, and hence intuitively better)

matches. E.g., in the response above. 'then' is always selected to match 'the'
in the model, leading to counter-intuitive markup.)

This procedure scans the solution, looking for cases where a rightward word I

would consitituto better fit than the current assignment, and adjusts the)

solution accordingly, producing, e.g., the improved, 'intuitive' markup shown)

above. Inversion count may be affected in cases like this:)

(Model: the time 1

f Response: then time the
Markup: x XXX
'Improved' markup: XXXX" <

(and it is not clear that this really represents an improvement. Hence, the)

(inversion count of each adjusted solution is checked, and if the number of
(inversions is increased, the proposed adjustment is not accepted. 1

procedure adjust solution (war sol: solutionrec):

var
r, ri, m, mi, ulia, slim, invComp: INTEGER;
dll, d12, d21, d22, odl, ed2: LONGINT:
rsave: CHAR;
a: str50;
strgl, strg2, strg: str255;
validwords: wordset;

I - - - - - --CorapInvCount I

Compares the number of inversions in an old solution and a new solution, and
returns -1 if the new solution has strictly less inversions than the old one,)

0 if the number of inversion is the same, or 1 if the new solution has more I

The old solution is specified in the input peramenters by a ptr into the)

sequence field of a solution record, typecast into byte array. The proposed I

new solution is specified as possible inversion, where the Fir belonging to r I

is to be exchanged with the 14 belonging to ri.)

function compInvCount (a: stra0; r, ri: INTEGER): INTEGER:

var
xs: etre();

k, xk, c, lasti, lestxi: INTEGER;

begin
(Build a sequence list for the proposed new solution.)

es :. s:

Page 26

BEST COPY AVAILABLE

malt') :- s(ri):
xs(ri) :e sir);
Initialize inversions counters and bookkeeping for counting loop.)

k se 0;
xk 0;

lasti se 0:
lasts!. :- 0;

Count invesion in both the old and the proposed new solution in parallel. 1

for i se 1 to rig do
begin
c :- Ord(xs(i));
if lc <> 0) then
begin
if (c < lastxi) then
Inc(xl();

lutei c;

end;

c :- Ord(s(i));
if (c <> 0) then
begin
if (c < lasti) then
Inc(k);
lasti se c;
end;

end;
Return boolean which tells whether the proposed solution is at least as good
in terms of number of inversions. 1

if (xk < k) then
compInvCount -1 (new sol has less inversions}

else if ()Lk - k) then

compInvCount :- 0 (new i old have same number of inversions)
else
compInvCount :- 1: (old sol has less inversions)

end; I compInvCount I

begin (adjust_solution)

(Build a list, in set format, of all unmatched response positions.)

se sol.seq:
validwords :- (l..rlg) - rignore:

Look in turn at each valid response word R, and the model word it is matched I

to, M. Look for another valid response word say R. matched to M. such that exchanging the I

match, so that R is mat..211ed to M. and R. is matched to M would im?rove the overall solution, 1

(because it either (a) causes no more inversions and improves totsl edit distance for sentence) OR,)

(b) causes less inversions, and does not increase total edit ale' ante. Whenever such R, R. can be found,)

then exchange the match so R goes with M. and R. goes with M.)

for r 1 to rig do
if (r in validwords) then
for ri :- 1 to rig do
if (ri In validwords) then
begin
m se Ord(s(r));
mi se Ord(s[ril);
if m 0 then
begin
dll :- infinity;
d21 infinity;
end
else
begin
dll air, m];
d21 se e(ri, m);
end;

if mi - 0 then
begin
d12 :- infinity;
d22 :- infinity;
end
else
begin
d12 :- a(r, mi);
d22 a(ri, mi];
end;

edl dll + d22:
ed2 d12 + d21;
invComp compInvCount(s, r, ri);
if ((ed2 < ed1) i (invComp <- 0)) t ((ed2 ed11 6 (invComp < 0)) then

begin (Exchange assignments so R <-> M. and R* <-> M. I

rsave so. s(ri):
(ri) s(r);
s(r) rsave;
end
end:

sol.seq s;

end; adjust_solution I

,

Page 28

(--Find_best_order

(Has overall control of the order analysis. Accepts a matrix of (normalized) 1

(edit distances as input, and returns single optimal matching as a solution, 1

in the form of a mapping of model to response words. The mapping is represented 1

I in the vectors r_to_m and (with index variable inverted) m_to_r.)

procedure find_best_ordr:

war
i: INTEGER;
totDist: LONGINT;
r, m, p: 0..wmax:
sol: solutionrec:
rightmost: INTEGER;
s: stra0:

begin

Initialize variables used by order matching algorithm, and call the algorithm)

at top level of recursion. Set of positions initially available consists of all)

positions in the model. 1

sol.seq := ":
sol.inversionk := 0:
sol.firstinv 0;

raincoat infinity;
rightmost :- 0;
solutionk := 0:
solutions_tried 0:

recursionk 0:

search_seguences((1..p1g1 sol, 0, 1);

1 Adjust solution to improve match with respect to spelling accuracy.)

if adjust_needed then
adjust_solution(solutionlist(1)):

Build a mapping of response-to-model and model-to-response words. These I

will be used to generate the sentence markup. Unmatched words are assigned to
dummy word GO. 1

s ;= solutionlist[11.seg:
matchedk 0;

avedist :- 0.0;
totDist := 0;
:matched
matched :. (1:

for i :- 1 to wmax do
begin
m_to_r(i) :- 0:

r_to_m(i) :- 0
end:

for r : 1 to rlg do
begin
m Ord(s(r11:
r_to m(r) := m:

if m > 0 then
begin
matched matched + (r):

maatched :- :matched (m):

m_to_r(m) := r:

totDist :- totDist + air, m): (total scaled normalized edit dist 1

Inc(matchedk):
end;

end:

if matchedk > 0 then
avedist :- totDist / (LONGINT(editWeightScale) LONGINT(matchedk1):

Compute proportion of matched words and proportion of non-inversions. These
values are used to decide whether a response should be judged as match (ok)
or a non-match (no) to the model pattern.)

i :- card([1..r1g) - rignore) card((1..plg) - mignore):
if i > 0 then
pmatched := (2 matchedk) / LONGINT(i)

else
pmatched := 1:
if matchedk > 0 then
pnoninversions :- 1 - (solutionlist(1).inversionk / matchedk)
else
pnoninversions :- 1;

end: (find_best_ordor 1

---------- ----- Word_markup

1 Generate proper markup for each word in sentence. Order markup symbols)

1 (missing word, extra word, displaced word) are generated here. If a)

misspelled word is also out of order, a (non- blank) order mark preempts any spelling 1

(mark which might be on the first character of the word.

I (Global) Return ears:)

I wordmark : vector of response word markups, spelling and order markup combined. 1

Page 29

procedure word_markup;

vat
r, a, p, lastfound: INTEGER;
c: string(11;
d: REAL;
s, *word: wordstr;
notmisaing: wordset;

begin
(Get the set of model positions which will NOT cause missing word word markup

(if absent at the expected place in the response. If anyorderok is false, 1

(this will consist of ignorable words. If anyorderok is true, it will be 1

(ignorable words plus those which appear somewhere in the sentence (i.e., are)

actually matched), but are out of order. I

if anyorderok than
notsissing signore + matched

else
notmissing signor.;
lastfound :- 0;
for r 1 to rlg do

(For each word in the response, retrieve the matched position, m, in the model,)

(and the corresponding word, p (if there were synonym lists in the model, then I

(probably m <> p. I

begin
:- r_to_m(r);

P eseg(r, ml;
(If nothing matched to response word, and it is not an ignorable word,)

I and extra words are not permitted, then generate extra word markup. 1

if r in rignore then
wordmrk(r) "
else if m 0 then
if extrawordsok then
wordmark(r) "

else
wordmark(r) dup_char(extrawd, Length(rw(r1))

(Otherwise, generate spelling markup. I

else
begin

(If current word is a runtogether, restore space before generating spollmarks. 1

if runtogether(r1 > 0 then
sword concat(mmiP). space, mw(runtogother(r)))
else
:sword mw(p);

If misspelling is OX, make spelling markup blank, else generate it. I

if misspellOK then
a :- dup_char(nomark, length(mword))
else (Return full markup in S.)

d nedit_dist(rw(r), mword, s, marksP^, True, False);
If the model position just matched skips ahead (right) of the last model 1

(position by more than 1, then -- unless every model word in between the two 1

positions is an ignorable word or unmarkable because it is merely out of order 1

(and order is not being marked -- some model words were left out at this point 1

in the response, so generate missing word markup to go just before this I

response word. 1

if (m > lastfound + 1) and not ((lastfound + 1..m - 11 notmissing) then
c missingwd
else

";
(If the model position matched appears in the model at position to the left)

(of the last model position matched, than the response ordering inverts the model 1

ordering at this point. Mark the matched response word as needing to be moved
(leftward. Do not do this, however, if anyorderok is in effect. Preempt the }

(first character of the spelling markup to show the moveword symbol, unless it's a space.)

if Im < lastfound) then
if (not anyorderok) i (sovewd <> nomark) then
wordmark(r) concat(c, movowd, Copy(s, 2, Length(s) - 1))
else
wordmark(r) concat(c, s)

else
begin
wordmark(r) concat(c, s);
lastfound is

end;

end;

end; (FOR)

(If final model position matched was not the rightmost position of model,)

(then 20010 model words ware left out at the end the response; mark missing .

(words at end of response. 1

if not ((lastfound + 1..plg) c signore) then
wordmark(r1g + 1) :- missingwd
else
wordmark[rlg + 1) '';

end; (word_markup I

I-- - - - - - - - - - - --------- ------------------ Marksentence I

(Prepare a markup string which can be displayed beneath words of student's response. 1

(Task of this routine is to make sure each markup will be positioned beneath appropriate 1

I word and letters.)

(Input ears: I

(wordeark : (Global) vector of markup strings, one for each response word I

function mark_sentence: string;

var
r, p: INTEGER;
st, outstr: string:

begin

(First char of markup should plot in position proceeding first char of response
(to provide place for a leading carat when initial words are missing.)

(2 extra chars to provide for leading and trailing carats. I

outstr : dup_char(nomerk, 2 + length(responseI):
for r : 1 to rig + 1 do

(Ignorable word chars are appended to preceding real word as if punctuation.)

if not (r in rignore) then
begin
m : wordmark(r):

(Move ahead 1 char if no missing wd mark (remember extra char at front)
if (s(1) missingwd) then
p : rwsloc(r)

else
p : rwxloc(r) + 1;

(Replace blanks at word location with markup string for the word.
delete(outstr, p, length(m));
insert(m, outstr, p):

end;

mark_sentence : outstr;

end; (mark sentence)

- --- -----------------CheckOrder

(Top-level sentence checking procedure which executes the major sub-procedures)

(needed to create the sentence markup.

procedure checkorder;

var
i: INTEGER:

bagin

Initialize borders of spelling edit distance matrix -- this is never)

cleared, so could be done in markup XFCN initialization if matrix were static. I

init_spelling(marksP");

(Build matrix of normalized edit distances between all (M, R) word pairs. I

fill_editd_matrix(mw, rw, mwseg, a, mg);

Build sets that record which model and response words have matches. For each I

r word, build choices(r), a set of all possible matches for r. 1

limt_possible_matches:

Try to extend matching by looking for run-together words among those so fat)

unmatched.)

if runtogether_needed and (not anyorderok) then
find_runtogother;

Apply exhaustive search algorithm to find a matching which minimizes number)

of inversions.)

find_best_order:

Generate strings for order and spelling markup.)

if word_markup_needed then
word_markup:

end; (checkorder

(------------- ---------- ompare I

Control structure for (default) full spelling and word order analysis.
Internalizes the two strings 'model' and 'response' to prepare them for
in the order checking algorithm, then runs that algorithm.)

use

I Output data structure (global):
(wordmark : A vector of markup strings, 'wordmark., with one entry I

for each word of the response.)

function compare (model, response: string): string;

begin

judgedok : False;
setmodel(model);
setresponse(rosponse);
checkorder;

Page 30

BEST COPY AVAILABLE

Page 31

ludgedok ((pmatched 1.0) or (extrawordsok and Unmatched ((1..plg) - mignore)11) and ((pnoninversions 1.0) or anyorderok)

and ((avedist - 0.0) or misspelloh);
compare :. mark...sentence;

end; (compare 1

(FORMAT OUTPUT TO HYPERCARD 1

{-

I- ----------- --------------------------------------FormatMarkUpMaps

Re-format the R_TO M and M_TO_R maps into a string suitable for return 1

to HyperCard. The maps are returned as lists of comma-separated integers,)

R_TO_M on line 1, and M_TO_R on line 2, of a two-line string.)

function formatMarkupMaps: Str255;

var
i: INTEGER;
s, t: Str255;

begin

s ..;

for i :. 1 to rig do
begin
numToStr(paramPtr, r_to_m(1.), t);
s Concat(s, t, ',.)

end;

silength(2)1 chr(13);) substitute newline for dangling zomma 1

for i :- 1 to pig do
begin
numToStr(paramPtr, m_to_r(i), t);
s Concat(s, t,
end;

s(length(s)) chr(13); (substitute newline for dangling comma)

for i :. 1 to rig do
begin
numToStr(paramPtr, rwaloc(il, t);
s Concat(s, t, ',.).

end;

formatMarkupMaps anit(s, length(s), 1); (remove dangling comma 1

end; (formatMarkupMaps)

(
FormatParamDisplay

(Access info requested by PARAMDISPLAYUEEDED and put it into HyperCard global THEMARKUPPARAMDISPLAY.

procedure formatParamDisplay (switch: CHAR);

var
i: INTEGER;
p, q: phon_variants;
s: Str255;
c, eh: CHAR;
h: handle;
hp: PTR;

begin

.,.;

s .';

h NewHandle(0);
appendStringToHandle(h, Concat(.MUParamDisplay switch, chr(13)));

case switch of
.v.:

appendStringToHandle(h, ver-AonStr);

for i :- 1 to 255 do
begin
ch chr(i);
if cas_info(ch) <> down_case then
appendStringToHandle(h, Concat(s, ch, basechar(ch), .,.)1;

end;

.d.:

for i :- 1 to 255 do
if diacrit_info(chr(i11 <> no accent then
appendStringToHandle(h, Concat(s, CHR(i), NtoS(ORD(diacrit_info(chr(1)1)), c));

.0';

for i :- 1 to 255 do
if case info(chr(i)1 <> down case then

Page 32
appendStringToHandle(h, Concat(s, CHR(i), c));

for i 1 to 255 do
appendStringToHandle(h, Concat(s, CHR(i), NtoS(ORD(phon_info(chr(i)1)), c));

for i 1 to 255 do
if chr(i) in dolim_chars then
appendStringToHandle(h, Concat(s, CRAW));

.w.:

begin
appendStringToHandle(h, Concat(NtoS(winsert), c, NtoS(wdelete), c, NtoS(wchange), c, NtoS(wtranspose), c, NtoS(wcap), c,

NtoS(waccant), c)):
appendStringToHandle(h, Concat(EtoS(properrors), c, EtoS(cutoff), c, EtoS(runon_criterion)));

end;
Of.

begin
case ORD(cap_fleg) of
1:

s exect_case.;
2:

2 7.. 'authors caps';
3:

s : 'ignore_case'
end: I CASE 1
appendStringToHandle(h, Concat(s, c, BtoS(anyOrderOk), c, StoS(extraWords0k), c, BtoS(missplall0k), c));
appendStringToHandle(h, Concat(BtoS(word_markup_needed), c, BtoS(runtogether_needed), c, BtoS(adjust_needed), c, BtoS(shortcut),

c) I ;
appendStringToHandle(h, Concat(paramDisplayNeeded, c, rawTracs, c, EitoS(trace)));
end;

begin
appendStringToHandle(h, Concat(addcap, dropcap, accenterr, extrawd, missingwd, movewd, extraltr, missingltr, substituteltr,

transltrl, transltr2, runonwd));
end:

for p vowel to phon5 do
for q vowel to phon5 do
appendStringToHandle(h, concat(s, NtoS(phon_matrix(p, q)), c));

otherwise
FAIL('%Invalid into type. Use: Version, Base, Diacrit, Cap, Punct, pHon, Weights, Flags, markupSymbols, phonMatrix6;

end; (CASE switch)

(Add null char terminator for HyperCard string)

GotHandleSize(h1;
hp :. PTR(ORD(h^) + 1 - 1); (Ptr to last byte of block.)

if (i > 0) i (hp^ ORD(.,,)) than
hp^ 0 (Replace trailing comma with null char terminator.)

else
appendStringToHandle(h, CHR(0)); (Append null char terminator)

(Assign handle to global.)

setGlobal(paramPtr, .theMarkupParamDisplay., 11);
disposeHandle(h);

end: (formatParamDisplay 1

(--

(TOP-LEVEL CONTROL STRUCTURE FOR MARKUP XFCN.)

(Top-level controlling procedure which unpacks HyperCard parameter values,)

(generates markup and sets up values for return to HyperCard.)

procedure markUp (paraePtr: XCrauPtr);

const
c ,,(;

var
h: handle;
p: PTR;

-------- --- ----- -------- GetStringParam I

Converts the PAR1lUM -th XFCN input parameter to a string.

function getStringParam (parmNum: INTEGER): Str255;

var
s: Str255;

begin

if (parunPte.paramCount < parmNum) then
getStringParam "

--MarkUp)

BEST COPY AVAILABLE

Page 33

else
begin
.--oToPas(paramPtr, paramPte.params(parmNum1", s);
getStringParam s;

and

end; (getStringParam)

(--------,---------------- GetCharParaJa)

(Converts the PARMNUM-th XFCN input parameter to an integer.)

function getCharParam (parmNum: INTEGER; default: CHAR): CHAR;

var
s: Str255;

begin

if (paramPte.paramCount < parmNum) than
getCharParam :- default
else
begin
ZeroToPas(paramPtr, paramPte.params(parmNum)", a);
if length(s) < I then
getCharPeram default

else
getCharParam s(1);

and

end; (getCharParam)

I ------ - - - - - ------ GetBooleanParam)

Converts the PARMNUM-th XFCN input parameter to a boolean value.)

If the parameter is empty, than DEFAULT is assigned as the value.)

function getBooleanParam (parmNum: INTEGER; default: BOOLEAN): BOOLEAN;

var
s: Str255;

begin

s getStringParam(parmNum);
if s " then
getBooleanParam :- default

else
begin
getBooleanParam strioBool(paramPtr, a);
if paramPtr".result <> noErr then
FAIL(concat(.4Bad boolean input param value', a))

end;

end; (getBooleanParam 1

(----- ------------------------ GetCapParam
Converts the PARBNUM-th XFCN input parameter to a cap variant value.)

If the parameter is empty, then DEFAULT is used.

function getCapParam (paramNum: INTEGER; default: cap_flag_type): cap_flag_type;

var
s: Str255;

begin

s getStringParam(paramNum);
if s - " then
getCapParam default

else if eq(s, 'exact_case) then
getCapParam : exact case

else if eq(s, 'authors_caps') then
getCapParam authors_caps

else if eq(s, 'ignore_case.) then
getCapParam ignore_case

else
FAIL(concat('%Bad cap_flag input param value: ,))

end; (getCapParam 1

begin (markUp)

p nil; (Cuz FAIL operates on P.)

Check input parameter syntax.)

if (paramPtr".paramCount 0) then

Page 34

FAIL(versionStr);

if (paramPtr^.paramCount < 2) than
FAIL('aNCOEL and RESPONSE parameters required');

(Clear debug global. I

returnInClobal('theMarkUpDobug', ");

(Got memory from Mac heap.)

p NewPtr(sizeOf(lamatrix));
if p nil then
FAXL('%Couldn"t get matrix memory..)

else
marksP LSMATRIXPTRIp);

Unpack the input parameters and format them as Pascal variables. I

Default settings are used if no parameter or empty parameter value.

model :- gctStringParam(1);
response :- getStringParae(2);
cap_flag getCapParam(3, exact_case);
extrallordsOK getBooleanParam(4, FALSE);
anyOrderOk getBooleanParam(5, FALSE);
misspellOK getBooleanParam(i, FALSE);
word_markup_needed getBooleanParam(7, TRUE);
runtogether_needed getBooleanParam(8, TRUE);
adjust needed getRooleanParals (9, TRUE);

shortCut getBooleanParam(10, TRUE);
markupMapsNeeded getBooleanParam(11, FALSE);
paramDisplayNeeded : getCharParam(12, 'x');
rawTrace getCharParam(13,
trace :- getBooleanParam(14, FALSE);

Initializes all static data structures, including the char info tables, punct table, 1

markup symbol table, phonmatrix, weights and threshold values.)

init markup;

(Format and return markup parameter display via global variable 'theMarkupParamDiaplay'.)

if paramDisplayNeeded <> 'x' then
formatParamDisplay(paramDisplayNeeded);

(Do all the markup work here; return the markup symbol string as the value of the XFCN.)

if rawTrace 'x' then
(If requested full (default) spelling and word order analysis.)

begin

(Compute markup string as direct return.)

paramPtr".ReturnValue PasTofero(paramPtr, compare(model, response));

I Format and return judging information via global variable 'theMarkUpReturnValuea*.)

returnInClobal('theMarkUpReturnValues., concat(BtoS(judged0k). c, EtoS(pMatched), c, EtoS(pNonInversions), c, EtoS(aveDist)));

(Format and return matching map information via global variable 'theMarkupMaps')

if markupMapsNmeded then
begin
h pasToZero(paramPtr, formatMarkupMaps):
if h nil then
FAIL(' %Out of memory while formating markup maps.')
else
begin
setClobal(paramPtr, 'theMarkupMaps', h);
disposHandle(h)
end

end
end

else
(If pure least-edit-trace analysis on input strings was requested,)

then generate edit distances and edit trace on raw input strings.
begin
edit_trace(model, response);
end;

(Get rid of dynamic memory.)

disposPtr(p);

(Don't pass the MARKUP message up HyperCard's inheritance structure.)

parmaPte.PasaFlag FALSE;

end; I markUp)

f-

I MAIN)

begin I main)

markup(paramPtr):

7 j
BEST COPY AVAILARtE

and; I main I

and. I unit narkupXFCN I

So

Page 35

